28-1 What is Physics?

As we have discussed, one major goal of physics is the study of how an electric field can produce an electric force on a charged object. A closely related goal is the study of how a magnetic field can produce a magnetic force on a (moving) charged particle or on a magnetic object such as a magnet. You may already have a hint of what a magnetic field is if you have ever attached a note to a refrigerator door with a small magnet or accidentally erased a credit card by moving it near a magnet. The magnet acts on the door or credit card via its magnetic field.

The applications of magnetic fields and magnetic forces are countless and changing rapidly every year. Here are just a few examples. For decades, the entertainment industry depended on the magnetic recording of music and images on audiotape and videotape. Although digital technology has largely replaced magnetic recording, the industry still depends on the magnets that control CD and DVD players and computer hard drives; magnets also drive the speaker cones in headphones, TVs, computers, and telephones. A modern car comes equipped with dozens of magnets because they are required in the motors for engine ignition, automatic window control, sunroof control, and windshield wiper control. Most security alarm systems, doorbells, and automatic door latches employ magnets. In short, you are surrounded by magnets.

The science of magnetic fields is physics; the application of magnetic fields is engineering. Both the science and the application begin with the question “What produces a magnetic field?”

28-2 What Produces a Magnetic Field?

Because an electric field \(\vec{E} \) is produced by an electric charge, we might reasonably expect that a magnetic field \(\vec{B} \) is produced by a magnetic charge. Although individual magnetic charges (called magnetic monopoles) are predicted by certain theories, their existence has not been confirmed. How then are magnetic fields produced? There are two ways.

One way is to use moving electrically charged particles, such as a current in a wire, to make an electromagnet. The current produces a magnetic field that can be used, for example, to control a computer hard drive or to sort scrap metal (Fig. 28-1). In Chapter 29, we discuss the magnetic field due to a current.
The other way to produce a magnetic field is by means of elementary particles such as electrons because these particles have an intrinsic magnetic field around them. That is, the magnetic field is a basic characteristic of each particle just as mass and electric charge (or lack of charge) are basic characteristics. As we discuss in Chapter 32, the magnetic fields of the electrons in certain materials add together to give a net magnetic field around the material. Such addition is the reason why a permanent magnet, the type used to hang refrigerator notes, has a permanent magnetic field. In other materials, the magnetic fields of the electrons cancel out, giving no net magnetic field surrounding the material. Such cancellation is the reason you do not have a permanent field around your body, which is good because otherwise you might be slammed up against a refrigerator door every time you passed one.

Our first job in this chapter is to define the magnetic field \(\mathbf{B} \). We do so by using the experimental fact that when a charged particle moves through a magnetic field, a magnetic force \(\mathbf{F}_B \) acts on the particle.

The Definition of \(\mathbf{B} \)

We determined the electric field \(\mathbf{E} \) at a point by putting a test particle of charge \(q \) at rest at that point and measuring the electric force \(\mathbf{F}_E \) acting on the particle. We then defined \(\mathbf{E} \) as

\[
\mathbf{E} = \frac{\mathbf{F}_E}{q}.
\]

(28-1)

If a magnetic monopole were available, we could define \(\mathbf{B} \) in a similar way. Because such particles have not been found, we must define \(\mathbf{B} \) in another way, in terms of the magnetic force \(\mathbf{F}_B \) exerted on a moving electrically charged test particle.

In principle, we do this by firing a charged particle through the point at which \(\mathbf{B} \) is to be defined, using various directions and speeds for the particle and determining the force \(\mathbf{F}_B \) that acts on the particle at that point. After many such trials we would find that when the particle's velocity \(\mathbf{v} \) is along a particular axis through the point, force \(\mathbf{F}_B \) is zero. For all other directions of \(\mathbf{v} \),
the magnitude of \(\vec{F}_B \) is always proportional to \(v \sin \phi \), where \(\phi \) is the angle between the zero-force axis and the direction of \(\vec{v} \). Furthermore, the direction of \(\vec{F}_B \) is always perpendicular to the direction of \(\vec{v} \). (These results suggest that a cross product is involved.)

We can then define a **magnetic field** \(\vec{B} \) to be a vector quantity that is directed along the zero-force axis. We can next measure the magnitude of \(\vec{F}_B \) when \(\vec{v} \) is directed perpendicular to that axis and then define the magnitude of \(\vec{B} \) in terms of that force magnitude:

\[
B = \frac{F_B}{|q|v},
\]

where \(q \) is the charge of the particle.

We can summarize all these results with the following vector equation:

\[
\vec{F}_B = q\vec{v} \times \vec{B},
\]

that is, the force \(\vec{F}_B \) on the particle is equal to the charge \(q \) times the cross product of its velocity \(\vec{v} \) and the field \(\vec{B} \) (all measured in the same reference frame). Using Eq. \(3-27 \) for the cross product, we can write the magnitude of \(\vec{F}_B \) as

\[
F_B = |q|vB \sin \phi,
\]

where \(\phi \) is the angle between the directions of velocity \(\vec{v} \) and magnetic field \(\vec{B} \).

Finding the Magnetic Force on a Particle

Equation \(28-3 \) tells us that the magnitude of the force \(\vec{F}_B \) acting on a particle in a magnetic field is proportional to the charge \(q \) and speed \(v \) of the particle. Thus, the force is equal to zero if the charge is zero or if the particle is stationary. Equation \(28-3 \) also tells us that the magnitude of the force is zero if \(\vec{v} \) and \(\vec{B} \) are either parallel (\(\phi = 0^\circ \)) or antiparallel (\(\phi = 180^\circ \)), and the force is at its maximum when \(\vec{v} \) and \(\vec{B} \) are perpendicular to each other.

Equation \(28-2 \) tells us all this plus the direction of \(\vec{F}_B \). From Section \(3-8 \), we know that the cross product \(\vec{v} \times \vec{B} \) in Eq. \(28-2 \) is a vector that is perpendicular to the two vectors \(\vec{v} \) and \(\vec{B} \). The right-hand rule (Figs. \(28-2a \) through \(28-2c \)) tells us that the thumb of the right hand points in the direction of \(\vec{v} \times \vec{B} \) when the finger sweep \(\vec{v} \) into \(\vec{B} \). If \(q \) is positive, then (by Eq. \(28-2 \)) the force \(\vec{F}_B \) has the same sign as \(\vec{v} \times \vec{B} \) and thus must be in the same direction; that is, for positive \(q \), \(\vec{F}_B \) is directed along the thumb (Fig. \(28-2d \)). If \(q \) is negative, then the force \(\vec{F}_B \) and cross product \(\vec{v} \times \vec{B} \) have opposite signs and thus must be in opposite directions. For negative \(q \), \(\vec{F}_B \) is directed opposite the thumb (Fig. \(28-2e \)).
The right-hand rule (in which \(\vec{v} \) is swept into \(\vec{B} \) through the smaller angle between them) gives the direction of \(\vec{v} \times \vec{B} \) as the direction of the thumb. (d) If \(q \) is positive, then the direction of \(\vec{F}_B = q \vec{v} \times \vec{B} \) is in the direction of \(\vec{v} \times \vec{B} \). (e) If \(q \) is negative, then the direction of \(\vec{F}_B \) is opposite that of \(\vec{v} \times \vec{B} \).

Regardless of the sign of the charge, however, the force \(\vec{F}_B \) acting on a charged particle moving with velocity \(\vec{v} \) through a magnetic field \(\vec{B} \) is always perpendicular to \(\vec{v} \) and \(\vec{B} \).

Thus, \(\vec{F}_B \) never has a component parallel to \(\vec{v} \). This means that \(\vec{F}_B \) cannot change the particle’s speed \(v \) (and thus it cannot change the particle’s kinetic energy). The force can change only the direction of \(\vec{v} \) (and thus the direction of travel); only in this sense can \(\vec{F}_B \) accelerate the particle.

To develop a feeling for Eq. 28-2, consider Fig. 28-3, which shows some tracks left by charged particles moving rapidly through a bubble chamber. The chamber, which is filled with liquid hydrogen, is immersed in a strong uniform magnetic field that is directed out of the plane of the figure. An incoming gamma ray particle—which leaves no track because it is uncharged—transforms into an electron (spiral track marked \(e^- \)) and a positron (track marked \(e^+ \)) while it knocks an electron out of a hydrogen atom (long track marked \(e^- \)). Check with Eq. 28-2 and Fig. 28-2 that the three tracks made by these two negative particles and one positive particle curve in the proper directions.
The SI unit for the magnetic field \mathbf{B} that follows from Eqs. (28-2) and (28-3) is the newton per coulomb-meter per second. For convenience, this is called the tesla (T):

$$1 \text{ tesla} = 1 \text{ T} = 1 \frac{\text{newton}}{\text{coulomb}}\frac{\text{meter}}{\text{second}}.$$

Recalling that a coulomb per second is an ampere, we have

$$1 \text{ T} = 1 \frac{\text{newton}}{\text{coulomb/second}}\frac{\text{meter}}{\text{second}} = 1 \frac{\text{N}}{\text{A} \cdot \text{m}}.$$

(28-4)

An earlier (non-SI) unit for \mathbf{B}, still in common use, is the gauss (G), and

$$1 \text{ tesla} = 10^4 \text{ gauss}.$$

(28-5)

Table 28-1 lists the magnetic fields that occur in a few situations. Note that Earth's magnetic field near the planet's surface is about 10^{-4} T ($= 100 \mu$T or 1 G).

<table>
<thead>
<tr>
<th>Magnetic Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>At surface of neutron star</td>
<td>10^8 T</td>
</tr>
<tr>
<td>Near big electromagnet</td>
<td>1.5 T</td>
</tr>
<tr>
<td>Near small bar magnet</td>
<td>10^{-2} T</td>
</tr>
<tr>
<td>At Earth's surface</td>
<td>10^{-4} T</td>
</tr>
<tr>
<td>In interstellar space</td>
<td>10^{-10} T</td>
</tr>
<tr>
<td>Smallest value in magnetically shielded room</td>
<td>10^{-14} T</td>
</tr>
</tbody>
</table>

CHECKPOINT 1

The figure shows three situations in which a charged particle with velocity \mathbf{v} travels through a uniform magnetic field \mathbf{B}. In each situation, what is the direction of the magnetic force \mathbf{F}_B on the particle?
We can represent magnetic fields with field lines, as we did for electric fields. Similar rules apply: (1) the direction of the tangent to a magnetic field line at any point gives the direction of \mathbf{B} at that point, and (2) the spacing of the lines represents the magnitude of \mathbf{B}—the magnetic field is stronger where the lines are closer together, and conversely.

Figure 28-4a shows how the magnetic field near a bar magnet (a permanent magnet in the shape of a bar) can be represented by magnetic field lines. The lines all pass through the magnet, and they all form closed loops (even those that are not shown closed in the figure). The external magnetic effects of a bar magnet are strongest near its ends, where the field lines are most closely spaced. Thus, the magnetic field of the bar magnet in Fig. 28-4b collects the iron filings mainly near the two ends of the magnet.

![Figure 28-4](image)

(a) The magnetic field lines for a bar magnet. (b) A “cow magnet”—a bar magnet that is intended to be slipped down into the rumen of a cow to prevent accidentally ingested bits of scrap iron from reaching the cow’s intestines. The iron filings at its ends reveal the magnetic field lines. (Courtesy Dr. Richard Cannon, Southeast Missouri State University, Cape Girardeau)

The (closed) field lines enter one end of a magnet and exit the other end. The end of a magnet from which the field lines emerge is called the north pole of the magnet; the other end, where field lines enter the magnet, is called the south pole. Because a magnet has two poles, it is said to be a magnetic dipole. The magnets we use to fix notes on refrigerators are short bar magnets. Figure 28-5 shows two other common shapes for magnets: a horseshoe magnet and a magnet that has been bent around into the shape of a C so that the pole faces are facing each other. (The magnetic field between the pole faces can then be approximately uniform.) Regardless of the shape of the magnets, if we place two of them near each other we find:
Opposite magnetic poles attract each other, and like magnetic poles repel each other.

![Diagram of magnetic poles](image)

Figure 28-5 (a) A horseshoe magnet and (b) a C-shaped magnet. (Only some of the external field lines are shown.)

Earth has a magnetic field that is produced in its core by still unknown mechanisms. On Earth's surface, we can detect this magnetic field with a compass, which is essentially a slender bar magnet on a low-friction pivot. This bar magnet, or this needle, turns because its north-pole end is attracted toward the Arctic region of Earth. Thus, the south pole of Earth's magnetic field must be located toward the Arctic. Logically, we then should call the pole there a south pole. However, because we call that direction north, we are trapped into the statement that Earth has a geomagnetic north pole in that direction.

With more careful measurement we would find that in the Northern Hemisphere, the magnetic field lines of Earth generally point down into Earth and toward the Arctic. In the Southern Hemisphere, they generally point up out of Earth and away from the Antarctic—that is, away from Earth's geomagnetic south pole.

Magnetic force on a moving charged particle

A uniform magnetic field \mathbf{B}, with magnitude 1.2 mT, is directed vertically upward throughout the volume of a laboratory chamber. A proton with kinetic energy 5.3 MeV enters the chamber, moving horizontally from south to north. What magnetic deflecting force acts on the proton as it enters the chamber? The proton mass is 1.67×10^{-27} kg. (Neglect Earth's magnetic field.)

KEY IDEAS

Because the proton is charged and moving through a magnetic field, a magnetic force \mathbf{F}_B can act on it. Because the initial direction of the proton's velocity is not along a magnetic field line, \mathbf{F}_B is not simply zero.

Magnitude:

To find the magnitude of \mathbf{F}_B, we can use Eq. 28.3 ($F_B = |q|vB \sin \theta$) provided we first find the proton's speed v. We can find v from the given kinetic energy because $K = \frac{1}{2}mv^2$. Solving for v, we obtain...
\[\nu = \sqrt{\frac{2K}{m}} = \sqrt{\frac{(2)(5.3 \text{ MeV}) \left(1.60 \times 10^{-13} \text{ J/MeV}\right)}{1.67 \times 10^{-27} \text{ kg}}} \]
\[= 3.2 \times 10^7 \text{ m/s}. \]

Equation 28-3 then yields
\[F_B = |q| v B \sin \phi \]
\[= (1.60 \times 10^{-19} \text{ C}) \left(3.2 \times 10^7 \text{ m/s}\right) \left(1.2 \times 10^{-3} \text{ T}\right)(\sin 90^\circ) \]
\[= 6.1 \times 10^{-15} \text{ N}. \]
This may seem like a small force, but it acts on a particle of small mass, producing a large acceleration; namely,
\[a = \frac{F_B}{m} = \frac{6.1 \times 10^{-15} \text{ N}}{1.67 \times 10^{-27} \text{ kg}} = 3.7 \times 10^{12} \text{ m/s}^2. \]

Direction: To find the direction of \(F_B \), we use the fact that \(F_B \) has the direction of the cross product \(q \vec{v} \times \vec{B} \).

Because the charge \(q \) is positive, \(F_B \) must have the same direction as \(\vec{v} \times \vec{B} \) which can be determined with the right-hand rule for cross products (as in Fig. 28-2d). We know that \(\vec{v} \) is directed horizontally from south to north and \(\vec{B} \) is directed vertically up. The right-hand rule shows us that the deflecting force \(F_B \) must be directed horizontally from west to east, as Fig. 28-6 shows. (The array of dots in the figure represents a magnetic field directed out of the plane of the figure. An array of Xs would have represented a magnetic field directed into that plane.)

![Figure 28-6](image)

An overhead view of a proton moving from south to north with velocity \(\vec{v} \) in a chamber. A magnetic field is directed vertically upward in the chamber, as represented by the array of dots (which resemble the tips of arrows). The proton is deflected toward the east.

If the charge of the particle were negative, the magnetic deflecting force would be directed in the opposite direction—that is, horizontally from east to west. This is predicted automatically by Eq. 28-2 if we substitute a negative value for \(q \).
as they move through crossed fields. We use as our example the experiment that led to the discovery of the electron in 1897 by J. J. Thomson at Cambridge University.

Figure 28-7 shows a modern, simplified version of Thomson's experimental apparatus—a cathode ray tube (which is like the picture tube in an old type television set). Charged particles (which we now know as electrons) are emitted by a hot filament at the rear of the evacuated tube and are accelerated by an applied potential difference \(v \). After they pass through a slit in screen C, they form a narrow beam. They then pass through a region of crossed \(\vec{E} \) and \(\vec{B} \) fields, headed toward a fluorescent screen S, where they produce a spot of light (on a television screen the spot is part of the picture). The forces on the charged particles in the crossed-fields region can deflect them from the center of the screen. By controlling the magnitudes and directions of the fields, Thomson could thus control where the spot of light appeared on the screen. Recall that the force on a negatively charged particle due to an electric field is directed opposite the field. Thus, for the arrangement of Fig. 28-7, electrons are forced up the page by electric field \(\vec{E} \) and down the page by magnetic field \(\vec{B} \); that is, the forces are in opposition. Thomson's procedure was equivalent to the following series of steps.

1. Set \(E = 0 \) and \(B = 0 \) and note the position of the spot on screen S due to the undeflected beam.
2. Turn on \(\vec{E} \) and measure the resulting beam deflection.
3. Maintaining \(\vec{E} \), now turn on \(\vec{B} \) and adjust its value until the beam returns to the undeflected position. (With the forces in opposition, they can be made to cancel.)

We discussed the deflection of a charged particle moving through an electric field \(\vec{E} \) between two plates (step 2 here) in the sample problem in the preceding section. We found that the deflection of the particle at the far end of the plates is

\[
y = \frac{|q|E L^2}{2m v^2},
\]

where \(v \) is the particle's speed, \(m \) its mass, and \(q \) its charge, and \(L \) is the length of the plates. We can apply this same equation to the beam of electrons in Fig. 28-7; if need be, we can calculate the deflection by measuring the deflection of the beam on screen S and then working back to calculate the deflection \(y \) at the end of the plates. (Because the direction of the deflection is set by the sign of the particle's charge, Thomson was able to show that the particles that were lighting up his screen were negatively charged.)

When the two fields in Fig. 28-7 are adjusted so that the two deflecting forces cancel (step 3), we have from Eqs. 28-1 and 28-3

\[
|q|E = |q| \nu B \sin(90^\circ) = |q| \nu B
\]
Thus, the crossed fields allow us to measure the speed of the charged particles passing through them. Substituting Eq. (28-7) for \(\nu \) in Eq. (28-6) and rearranging yield

\[
\frac{m}{|q|} = \frac{B^2 r^2}{2 y E}
\]

in which all quantities on the right can be measured. Thus, the crossed fields allow us to measure the ratio \(m/|q| \) of the particles moving through Thomson's apparatus.

Thomson claimed that these particles are found in all matter. He also claimed that they are lighter than the lightest known atom (hydrogen) by a factor of more than 1000. (The exact ratio proved later to be 1836.15.) His \(m/|q| \) measurement, coupled with the boldness of his two claims, is considered to be the “discovery of the electron.”

CHECKPOINT 2

The figure shows four directions for the velocity vector \(\vec{v} \) of a positively charged particle moving through a uniform electric field \(\vec{E} \) (directed out of the page and represented with an encircled dot) and a uniform magnetic field \(\vec{B} \). (a) Rank directions 1, 2, and 3 according to the magnitude of the net force on the particle, greatest first. (b) Of all four directions, which might result in a net force of zero?

28-5 Crossed Fields: The Hall Effect

As we just discussed, a beam of electrons in a vacuum can be deflected by a magnetic field. Can the drifting conduction electrons in a copper wire also be deflected by a magnetic field? In 1879, Edwin H. Hall, then a 24-year-old graduate student at the Johns Hopkins University, showed that they can. This **Hall effect** allows us to find out whether the charge carriers in a conductor are positively or negatively charged. Beyond that, we can measure the number of such carriers per unit volume of the conductor.

Figure 28-8a shows a copper strip of width \(d \), carrying a current \(i \) whose conventional direction is from the top of the figure to the bottom. The charge carriers are electrons and, as we know, they drift (with drift speed \(\nu_d \)) in the opposite direction, from bottom to top. At the instant shown in Fig. 28-8a, an external magnetic field \(\vec{B} \), pointing into the plane of the figure, has just been turned on. From Eq. (28-2) we see that a magnetic deflecting force \(\vec{F} \) will act on each drifting electron, pushing it toward the right edge of the strip.
A strip of copper carrying a current i is immersed in a magnetic field \vec{B}. (a) The situation immediately after the magnetic field is turned on. The curved path that will then be taken by an electron is shown. (b) The situation at equilibrium, which quickly follows. Note that negative charges pile up on the right side of the strip, leaving uncompensated positive charges on the left. Thus, the left side is at a higher potential than the right side. (c) For the same current direction, if the charge carriers were positively charged, they would pile up on the right side, and the right side would be at the higher potential.

As time goes on, electrons move to the right, mostly piling up on the right edge of the strip, leaving uncompensated positive charges in fixed positions at the left edge. The separation of positive charges on the left edge and negative charges on the right edge produces an electric field \vec{E} within the strip, pointing from left to right in Fig. 28-8b. This field exerts an electric force $\vec{F} = \vec{E} \times \vec{v}$ on each electron, tending to push it to the left. Thus, this electric force on the electrons, which opposes the magnetic force on them, begins to build up.
An equilibrium quickly develops in which the electric force on each electron has increased enough to match the magnetic force. When this happens, as Fig. 28-8b shows, the force due to \(\vec{B} \) and the force due to \(\vec{E} \) are in balance. The drifting electrons then move along the strip toward the top of the page at velocity \(\vec{v}_d \) with no further collection of electrons on the right edge of the strip and thus no further increase in the electric field \(\vec{E} \).

A *Hall potential difference* \(V \) is associated with the electric field across strip width \(d \). From Eq. 24-42, the magnitude of that potential difference is

\[
V = Ed. \tag{28-9}
\]

By connecting a voltmeter across the width, we can measure the potential difference between the two edges of the strip. Moreover, the voltmeter can tell us which edge is at higher potential. For the situation of Fig. 28-8b, we would find that the left edge is at higher potential, which is consistent with our assumption that the charge carriers are negatively charged.

For a moment, let us make the opposite assumption, that the charge carriers in current \(i \) are positively charged (Fig. 28-8c).

Convince yourself that as these charge carriers move from top to bottom in the strip, they are pushed to the right edge by \(\vec{F}_B \) and thus that the *right* edge is at higher potential. Because that last statement is contradicted by our voltmeter reading, the charge carriers must be negatively charged.

Now for the quantitative part. When the electric and magnetic forces are in balance (Fig. 28-8b), Eqs. 28-1 and 28-3 give us

\[
eE = e\nu_dB. \tag{28-10}
\]

From Eq. 26-7, the drift speed \(\nu_d \) is

\[
\nu_d = \frac{J}{ne} = \frac{i}{neA}, \tag{28-11}
\]

in which \(J (= iA) \) is the current density in the strip, \(A \) is the cross-sectional area of the strip, and \(n \) is the *number density* of charge carriers (their number per unit volume).

In Eq. 28-10, substituting for \(E \) with Eq. 28-9 and substituting for \(\nu_d \) with Eq. 28-11, we obtain

\[
n = \frac{Bi}{Vle} \tag{28-12}
\]

in which \(l (= A/d) \) is the thickness of the strip. With this equation we can find \(n \) from measurable quantities.

It is also possible to use the Hall effect to measure directly the drift speed \(\nu_d \) of the charge carriers, which you may recall is of the order of centimeters per hour. In this clever experiment, the metal strip is moved mechanically through the magnetic field in a direction opposite that of the drift velocity of the charge carriers. The speed of the moving strip is then adjusted until the Hall potential difference vanishes. At this condition, with no Hall effect, the velocity of the charge carriers with respect to the laboratory frame must be zero, so the velocity of the strip must be equal in magnitude but opposite the direction of the velocity of the negative charge carriers.

Potential difference set up across a moving conductor

Figure 28-9a shows a solid metal cube, of edge length \(d = 1.5 \) cm, moving in the positive \(y \) direction at a constant velocity \(\vec{v} \) of magnitude 4.0 m/s. The cube moves through a uniform magnetic field \(\vec{B} \) of magnitude 0.050 T in the positive \(z \) direction.
Figure 28-9 (a) A solid metal cube moves at constant velocity through a uniform magnetic field. (b) – (d) In these front views, the magnetic force acting on an electron forces the electron to the left face, making that face negative and leaving the opposite face positive. (e) – (f) The resulting weak electric field creates a weak electric force on the next electron, but it too is forced to the left face. Now (g) the electric field is stronger and (h) the electric force matches the magnetic force.

KEY IDEA

Because the cube is moving through a magnetic field \(\mathbf{B} \), a magnetic force \(\mathbf{F}_B \) acts on its charged particles, including its conduction electrons.

Reasoning:

When the cube first begins to move through the magnetic field, its electrons do also. Because each electron has charge \(q \) and is moving through a magnetic field with velocity \(\mathbf{v} \), the magnetic force \(\mathbf{F}_B \) acting on the electron is given by Eq. 28-2. Because \(q \) is negative, the direction of \(\mathbf{F}_B \) is opposite the cross product \(\mathbf{v} \times \mathbf{B} \) which is in the positive direction of the x axis (Fig. 28-9b). Thus, \(\mathbf{F}_B \) acts in the negative direction of the x axis, toward the left face.
of the cube (Fig. 28-9c).

Most of the electrons are fixed in place in the atoms of the cube. However, because the cube is a metal, it contains conduction electrons that are free to move. Some of those conduction electrons are deflected by \vec{F}_B to the left cube face, making that face negatively charged and leaving the right face positively charged (Fig. 28-9d). This charge separation produces an electric field \vec{E} directed from the positively charged right face to the negatively charged left face (Fig. 28-9e). Thus, the left face is at a lower electric potential, and the right face is at a higher electric potential.

(b) What is the potential difference between the faces of higher and lower electric potential?

Key Ideas

1. The electric field \vec{E} created by the charge separation produces an electric force $\vec{F}_E = q\vec{E}$ on each electron (Fig. 28-9f). Because q is negative, this force is directed opposite the field \vec{E}—that is, rightward. Thus on each electron, \vec{F}_E acts toward the right and \vec{F}_B acts toward the left.

2. When the cube had just begun to move through the magnetic field and the charge separation had just begun, the magnitude of \vec{E} began to increase from zero. Thus, the magnitude of \vec{F}_E also began to increase from zero and was initially smaller than the magnitude \vec{F}_B. During this early stage, the net force on any electron was dominated by \vec{F}_B, which continuously moved additional electrons to the left cube face, increasing the charge separation (Fig. 28-9g).

3. However, as the charge separation increased, eventually magnitude F_E became equal to magnitude F_B (Fig. 28-9h). The net force on any electron was then zero, and no additional electrons were moved to the left cube face. Thus, the magnitude of \vec{F}_E could not increase further, and the electrons were then in equilibrium.

Calculations:

We seek the potential difference V between the left and right cube faces after equilibrium was reached (which occurred quickly). We can obtain V with Eq. 28-9 ($V = Ed$) provided we first find the magnitude E of the electric field at equilibrium. We can do so with the equation for the balance of forces ($F_E = F_B$).

For F_E, we substitute $|q|E$, and then for F_B, we substitute $|q|\nu B \sin$ from Eq. 28-3. From Fig. 28-9a, we see that the angle between velocity vector \vec{v} and magnetic field vector \vec{B} is 90°; thus $\sin = 1$ and $F_E = F_B$ yields

$$|q|E = |q|\nu B \sin 90° = |q|\nu B.$$

This gives us $E = \nu B$; so $V = Ed$ becomes

$$V = \nu B d.$$

(28-13)

Substituting known values gives us

$$V = (4.0 \text{ m/s})(0.050 \text{ T})(0.015 \text{ m})$$

$$= 0.0030 \text{ V} = 3.0 \text{ mV}.$$

(Answer)
A Circulating Charged Particle

If a particle moves in a circle at constant speed, we can be sure that the net force acting on the particle is constant in magnitude and points toward the center of the circle, always perpendicular to the particle's velocity. Think of a stone tied to a string and whirled in a circle on a smooth horizontal surface, or of a satellite moving in a circular orbit around Earth. In the first case, the tension in the string provides the necessary force and centripetal acceleration. In the second case, Earth's gravitational attraction provides the force and acceleration.

Figure 28-10 shows another example: A beam of electrons is projected into a chamber by an electron gun G. The electrons enter in the plane of the page with speed ν and then move in a region of uniform magnetic field \vec{B} directed out of that plane. As a result, a magnetic force $\vec{F}_B = q\vec{v} \times \vec{B}$ continuously deflects the electrons, and because \vec{v} and \vec{B} are always perpendicular to each other, this deflection causes the electrons to follow a circular path. The path is visible in the photo because atoms of gas in the chamber emit light when some of the circulating electrons collide with them.

![Figure 28-10](image)

We would like to determine the parameters that characterize the circular motion of these electrons, or of any particle of charge magnitude $|q|$ and mass m moving perpendicular to a uniform magnetic field \vec{B} at speed ν. From Eq. 28-3, the force acting on the particle has a magnitude of $|q|\nu B$. From Newton's second law $\vec{F} = m\vec{a}$ applied to uniform circular motion (Eq. 6-18),

$$F = m\frac{\nu^2}{r},$$

we have
Solving for \(r \), we find the radius of the circular path as
\[
r = \frac{mv}{|q|B} \quad \text{(radius)}.
\] (28-16)

The period \(T \) (the time for one full revolution) is equal to the circumference divided by the speed:
\[
T = \frac{2\pi r}{v} = \frac{2\pi}{|q|B} \quad \text{(period)}.
\] (28-17)

The frequency \(f \) (the number of revolutions per unit time) is
\[
f = \frac{1}{T} = \frac{|q|B}{2\pi m} \quad \text{(frequency)}.
\] (28-18)

The angular frequency \(\omega \) of the motion is then
\[
\omega = 2\pi f = \frac{|q|B}{m} \quad \text{(angular frequency)}.
\] (28-19)

The quantities \(T, f \), and \(\omega \) do not depend on the speed of the particle (provided the speed is much less than the speed of light). Fast particles move in large circles and slow ones in small circles, but all particles with the same charge-to-mass ratio \(|q|/m \) take the same time \(T \) (the period) to complete one round trip. Using Eq. 28-2, you can show that if you are looking in the direction of \(B \), the direction of rotation for a positive particle is always counterclockwise, and the direction for a negative particle is always clockwise.

Helical Paths

If the velocity of a charged particle has a component parallel to the (uniform) magnetic field, the particle will move in a helical path about the direction of the field vector. Figure 28-11a, for example, shows the velocity vector \(\vec{v} \) of such a particle resolved into two components, one parallel to \(\vec{B} \) and one perpendicular to it:
\[
\nu_\parallel = \nu \cos \phi \quad \text{and} \quad \nu_\perp = \nu \sin \phi.
\] (28-20)

The parallel component determines the *pitch* \(p \) of the helix—that is, the distance between adjacent turns (Fig. 28-11b). The perpendicular component determines the radius of the helix and is the quantity to be substituted for \(\nu \) in Eq. 28-16.
The velocity component perpendicular to the field causes circling, which is stretched upward by the parallel component.

(a) A charged particle moves in a uniform magnetic field \vec{B}, the particle's velocity \vec{v} making an angle with the field direction. (b) The particle follows a helical path of radius r and pitch p. (c) A charged particle spiraling in a nonuniform magnetic field. (The particle can become trapped, spiraling back and forth between the strong field regions at either end.) Note that the magnetic force vectors at the left and right sides have a component pointing toward the center of the figure.

Figure 28-11c shows a charged particle spiraling in a nonuniform magnetic field. The more closely spaced field lines at the left and right sides indicate that the magnetic field is stronger there. When the field at an end is strong enough, the particle “reflects” from that end. If the particle reflects from both ends, it is said to be trapped in a magnetic bottle.

CHECKPOINT 3

The figure here shows the circular paths of two particles that travel at the same speed in a uniform magnetic field \vec{B}, which is directed into the page. One particle is a proton; the other is an electron (which is less massive). (a) Which particle follows the smaller circle, and (b) does that particle travel clockwise or counterclockwise?
Helical motion of a charged particle in a magnetic field

An electron with a kinetic energy of 22.5 eV moves into a region of uniform magnetic field \vec{B} of magnitude 4.55×10^{-4} T. The angle between the directions of \vec{B} and the electron's velocity \vec{v} is 65.5°. What is the pitch of the helical path taken by the electron?

KEY IDEAS

(1) The pitch p is the distance the electron travels parallel to the magnetic field \vec{B} during one period T of circulation.

(2) The period T is given by Eq. 28-17 regardless of the angle between the directions of \vec{v} and \vec{B} (provided the angle is not zero, for which there is no circulation of the electron).

Calculations:

Using Eqs. 28-20 and 28-17, we find

$$P = \nu \parallel T = (\nu \cos \phi) \frac{2\pi m}{|q|B}. \quad (28-21)$$

Calculating the electron's speed ν from its kinetic energy, find that $\nu = 2.81 \times 10^6$ m/s. Substituting this and known data in Eq. 28-21 gives us

$$P = (2.81 \times 10^6 \text{ m/ s})(\cos 65.5°) \times \frac{2\pi \left(9.11 \times 10^{-31} \text{ kg}\right)}{\left(1.60 \times 10^{-19} \text{ C}\right)\left(4.55 \times 10^{-4} \text{ T}\right)} \quad \text{(Answer)}$$

$$= 9.16 \text{ cm}.$$

Uniform circular motion of a charged particle in a magnetic field

Figure 28-12 shows the essentials of a mass spectrometer, which can be used to measure the mass of an ion; an ion of mass m (to be measured) and charge q is produced in source S. The initially stationary ion is accelerated by the electric field due to a potential difference V. The ion leaves S and enters a separator chamber in which a uniform magnetic field \vec{B} is perpendicular to the path of the ion. A wide detector lines the bottom wall of the chamber, and the \vec{B} causes the ion to move in a semicircle and thus strike the detector. Suppose that $B = 80.000$ mT, $V = 1000.0$ V, and ions of charge $q = + 1.6022 \times 10^{-19}$ C strike the detector at a point that lies at $x = 1.6254$ m. What is the mass m of the individual ions, in atomic mass units (Eq. 1-7: 1 u = 1.6605×10^{-27} kg)?
Figure 28-12 Essentials of a mass spectrometer. A positive ion, after being accelerated from its source S by a potential difference V, enters a chamber of uniform magnetic field \vec{B}. There it travels through a semicircle of radius r and strikes a detector at a distance x from where it entered the chamber.

KEY IDEAS

(1) Because the (uniform) magnetic field causes the (charged) ion to follow a circular path, we can relate the ion's mass m to the path's radius r with Eq. 28-16 ($r = mv/|q|B$). From Fig. 28-12 we see that $r = x/2$ (the radius is half the diameter). From the problem statement, we know the magnitude B of the magnetic field. However, we lack the ion's speed ν in the magnetic field after the ion has been accelerated due to the potential difference V. (2) To relate ν and v, we use the fact that mechanical energy ($E_{\text{mec}} = K + U$) is conserved during the acceleration.

Finding speed:

When the ion emerges from the source, its kinetic energy is approximately zero. At the end of the acceleration, its kinetic energy is $\frac{1}{2}m \nu^2$. Also, during the acceleration, the positive ion moves through a change in potential of $-V$. Thus, because the ion has positive charge q, its potential energy changes by $-qV$. If we now write the conservation of mechanical energy as

$$\Delta K + \Delta U = 0,$$

we get

$$\frac{1}{2}m \nu^2 - qV = 0$$

or

$$\nu = \sqrt{\frac{2qV}{m}}. \quad (28-22)$$

Finding mass: Substituting this value for ν into Eq. 28-16 gives us

$$r = \frac{m \nu}{qB} = \frac{m}{qB} \sqrt{\frac{2qV}{m}} = \frac{1}{B} \sqrt{\frac{2mV}{q}}.$$

Thus,

$$x = 2r = \frac{2}{B} \sqrt{\frac{2mV}{q}}.$$

Solving this for m and substituting the given data yield
Beams of high-energy particles, such as high-energy electrons and protons, have been enormously useful in probing atoms and nuclei to reveal the fundamental structure of matter. Such beams were instrumental in the discovery that atomic nuclei consist of protons and neutrons and in the discovery that protons and neutrons consist of quarks and gluons. The challenge of such beams is how to make and control them. Because electrons and protons are charged, they can be accelerated to the required high energy if they move through large potential differences. Because electrons have low mass, accelerating them in this way can be done in a reasonable distance. However, because protons (and other charged particles) have greater mass, the distance required for the acceleration is too long.

A clever solution to this problem is first to let protons and other massive particles move through a modest potential difference (so that they gain a modest amount of energy) and then use a magnetic field to cause them to circle back and move through a modest potential difference again. If this procedure is repeated thousands of times, the particles end up with a very large energy.

Here we discuss two accelerators that employ a magnetic field to repeatedly bring particles back to an accelerating region, where they gain more and more energy until they finally emerge as a high-energy beam.

The Cyclotron

Figure 28-13 is a top view of the region of a cyclotron in which the particles (protons, say) circulate. The two hollow D-shaped objects (each open on its straight edge) are made of sheet copper. These dees, as they are called, are part of an electrical oscillator that alternates the electric potential difference across the gap between the dees. The electrical signs of the dees are alternated so that the electric field in the gap alternates in direction, first toward one dee and then toward the other dee, back and forth. The dees are immersed in a large magnetic field directed out of the plane of the page. The magnitude B of this field is set via a control on the electromagnet producing the field.
The elements of a cyclotron, showing the particle source S and the dees. A uniform magnetic field is directed up from the plane of the page. Circulating protons spiral outward within the hollow dees, gaining energy every time they cross the gap between the dees.

Suppose that a proton, injected by source S at the center of the cyclotron in Fig. 28-13, initially moves toward a negatively charged dee. It will accelerate toward this dee and enter it. Once inside, it is shielded from electric fields by the copper walls of the dee; that is, the electric field does not enter the dee. The magnetic field, however, is not screened by the (nonmagnetic) copper dee, so the proton moves in a circular path whose radius, which depends on its speed, is given by Eq. 28-16 \(r = \frac{mv}{|q|B} \).

Let us assume that at the instant the proton emerges into the center gap from the first dee, the potential difference between the dees is reversed. Thus, the proton again faces a negatively charged dee and is again accelerated. This process continues, the circulating proton always being in step with the oscillations of the dee potential, until the proton has spiraled out to the edge of the dee system. There a deflector plate sends it out through a portal.

The key to the operation of the cyclotron is that the frequency f at which the proton circulates in the magnetic field (and that does not depend on its speed) must be equal to the fixed frequency f_{osc} of the electrical oscillator, or

$$f = f_{osc} \quad \text{(resonance condition)}$$

This resonance condition says that, if the energy of the circulating proton is to increase, energy must be fed to it at a frequency f_{osc} that is equal to the natural frequency f at which the proton circulates in the magnetic field.

Combining Eqs. 28-18 \(f = \frac{|q|B}{2\pi m} \) and 28-23 allows us to write the resonance condition as

$$|q|B = 2\pi mf_{osc} \quad \text{(28-24)}$$

For the proton, q and m are fixed. The oscillator (we assume) is designed to work at a single fixed frequency f_{osc}. We then “tune” the cyclotron by varying B until Eq. 28-24 is satisfied, and then many protons circulate through the magnetic field, to emerge as a beam.

The Proton Synchrotron

At proton energies above 50 MeV, the conventional cyclotron begins to fail because one of the assumptions of its design—that the frequency of revolution of a charged particle circulating in a magnetic field is independent of the particle’s speed—is true only for speeds that are much less than the speed of light. At greater proton speeds (above about 10% of the speed of light), we
must treat the problem relativistically. According to relativity theory, as the speed of a circulating proton approaches that of light, the proton's frequency of revolution decreases steadily. Thus, the proton gets out of step with the cyclotron's oscillator—whose frequency remains fixed at f_{osc}—and eventually the energy of the still circulating proton stops increasing.

There is another problem. For a 500 GeV proton in a magnetic field of 1.5 T, the path radius is 1.1 km. The corresponding magnet for a conventional cyclotron of the proper size would be impossibly expensive, the area of its pole faces being about 4×10^6 m2.

The proton synchrotron is designed to meet these two difficulties. The magnetic field B and the oscillator frequency f_{osc}, instead of having fixed values as in the conventional cyclotron, are made to vary with time during the accelerating cycle. When this is done properly, (1) the frequency of the circulating protons remains in step with the oscillator at all times, and (2) the protons follow a circular—not a spiral—path. Thus, the magnet need extend only along that circular path, not over some 4×10^6 m2.

The circular path, however, still must be large if high energies are to be achieved. The proton synchrotron at the Fermi National Accelerator Laboratory (Fermilab) in Illinois has a circumference of 6.3 km and can produce protons with energies of about 1 TeV ($= 10^{12}$ eV).

Accelerating a charged particle in a cyclotron

Suppose a cyclotron is operated at an oscillator frequency of 12 MHz and has a dee radius $R = 53$ cm.

(a) What is the magnitude of the magnetic field needed for deuterons to be accelerated in the cyclotron? The deuteron mass is $m = 3.34 \times 10^{-27}$ kg (twice the proton mass).

KEY IDEA

For a given oscillator frequency f_{osc}, the magnetic field magnitude B required to accelerate any particle in a cyclotron depends on the ratio $m/|q|$ of mass to charge for the particle, according to Eq. 28-24 ($|q|B = 2\pi mf_{osc}$).

Calculation:

For deuterons and the oscillator frequency $f_{osc} = 12$ MHz, we find

$$B = \frac{2\pi mf_{osc}}{|q|} = \frac{(2\pi) \left(3.34 \times 10^{-27} \text{ Kg}\right) \left(12 \times 10^6 \text{ s}^{-1}\right)}{1.60 \times 10^{-19} \text{ C}} \approx 1.57 \text{ T} \approx 1.6 \text{ T}.$$

(Note that, to accelerate protons, B would have to be reduced by a factor of 2, provided the oscillator frequency remained fixed at 12 MHz.)

(b) What is the resulting kinetic energy of the deuterons?

KEY IDEAS

1. The kinetic energy $\frac{1}{2}mv^2$ of a deuteron exiting the cyclotron is equal to the kinetic energy it had just before exiting, when it was traveling in a circular path with a radius approximately equal to the radius R of the cyclotron dees.
2. We can find the speed v of the deuteron in that circular path with Eq. 28-16 ($r = mv/|q|B$).

Calculations:

Solving that equation for v, substituting R for r, and then substituting known data, we find...
\[\nu = \frac{R|q|B}{m} = \frac{(0.53 \text{ m})(1.60 \times 10^{-19} \text{ C})(1.57 \text{ T})}{3.34 \times 10^{-27} \text{ Kg}} \]

\[= 3.99 \times 10^7 \text{ m/s} \]

This speed corresponds to a kinetic energy of

\[K = \frac{1}{2} m \nu^2 \]

\[= \frac{1}{2} (3.34 \times 10^{-27} \text{ Kg}) (3.99 \times 10^7 \text{ m/s})^2 \]

\[= 2.7 \times 10^{-12} \text{ J} \]

or about 17 MeV.

28-8 Magnetic Force on a Current-Carrying Wire

We have already seen (in connection with the Hall effect) that a magnetic field exerts a sideways force on electrons moving in a wire. This force must then be transmitted to the wire itself, because the conduction electrons cannot escape sideways out of the wire.

In Fig. 28-14a, a vertical wire, carrying no current and fixed in place at both ends, extends through the gap between the vertical pole faces of a magnet. The magnetic field between the faces is directed outward from the page. In Fig. 28-14b, a current is sent upward through the wire; the wire deflects to the right. In Fig. 28-14c, we reverse the direction of the current and the wire deflects to the left.
A flexible wire passes between the pole faces of a magnet (only the farther pole face is shown). (a) Without current in the wire, the wire is straight. (b) With upward current, the wire is deflected rightward. (c) With downward current, the deflection is leftward. The connections for getting the current into the wire at one end and out of it at the other end are not shown.

Figure 28-15 shows what happens inside the wire of Fig. 28-14b. We see one of the conduction electrons, drifting downward with an assumed drift speed \(v_d \). Equation 28-3, in which we must put \(\theta = 90^\circ \), tells us that a force \(\vec{F}_B \) of magnitude \(e v_d B \) must act on each such electron. From Eq. 28-2 we see that this force must be directed to the right. We expect then that the wire as a whole will experience a force to the right, in agreement with Fig. 28-14b.

If, in Fig. 28-15, we were to reverse either the direction of the magnetic field or the direction of the current, the force on the wire would reverse, being directed now to the left. Note too that it does not matter whether we consider negative charges drifting downward in the wire (the actual case) or positive charges drifting upward. The direction of the deflecting force on the wire is the same. We are safe then in dealing with a current of positive charge, as we usually do in dealing with circuits.
Consider a length L of the wire in Fig. 28-15. All the conduction electrons in this section of wire will drift past plane xx in Fig. 28-15 in a time $t = L/v_d$. Thus, in that time a charge given by

\[q = it = i\frac{L}{v_d} \]

will pass through that plane. Substituting this into Eq. 28-3 yields

\[F_B = qv_d B \sin \phi = iL v_d B \sin 90^\circ \]

or

\[F_B = iLB. \] (28-25)

Note that this equation gives the magnetic force that acts on a length L of straight wire carrying a current i and immersed in a uniform magnetic field \vec{B} that is perpendicular to the wire.

If the magnetic field is not perpendicular to the wire, as in Fig. 28-16, the magnetic force is given by a generalization of Eq. 28-25:

\[\vec{F}_B = i\vec{L} \times \vec{B} \] (force on a current). (28-26)

Here \vec{L} is a length vector that has magnitude L and is directed along the wire segment in the direction of the (conventional) current. The force magnitude F_B is

\[F_B = iLB \sin \phi, \] (28-27)

where is the angle between the directions of \vec{L} and \vec{B}. The direction of \vec{F}_B is that of the cross product $\vec{L} \times \vec{B}$ because we take current i to be a positive quantity. Equation 28-26 tells us that \vec{F}_B is always perpendicular to the plane defined by vectors \vec{L} and \vec{B}, as indicated in Fig. 28-16.

The force is perpendicular to both the field and the length.

![Figure 28-16](image)

A wire carrying current i makes an angle with magnetic field \vec{B}. The wire has length L in the field and length vector \vec{L} (in the direction of the current). A magnetic force $\vec{F}_B = i\vec{L} \times \vec{B}$ acts on the wire.

Equation 28-26 is equivalent to Eq. 28-2 in that either can be taken as the defining equation for \vec{B}. In practice, we define \vec{B} from Eq. 28-26 because it is much easier to measure the magnetic force acting on a wire than that on a single moving charge.

If a wire is not straight or the field is not uniform, we can imagine the wire broken up into small straight segments and apply Eq. 28-26 to each segment. The force on the wire as a whole is then the vector sum of all the forces on the segments that make it up. In the differential limit, we can write

\[d\vec{F}_B = i d\vec{L} \times \vec{B}, \] (28-28)

and we can find the resultant force on any given arrangement of currents by integrating Eq. 28-28 over that arrangement.
In using Eq. 28-28, bear in mind that there is no such thing as an isolated current-carrying wire segment of length \(dL \). There must always be a way to introduce the current into the segment at one end and take it out at the other end.

CHECKPOINT 4

The figure shows a current \(i \) through a wire in a uniform magnetic field \(\vec{B} \), as well as the magnetic force \(\vec{F}_B \) acting on the wire. The field is oriented so that the force is maximum. In what direction is the field?

![Diagram of a wire with a current and magnetic field](image)

Magnetic force on a wire carrying current

A straight, horizontal length of copper wire has a current \(i = 28 \) A through it. What are the magnitude and direction of the minimum magnetic field \(\vec{B} \) needed to suspend the wire—that is, to balance the gravitational force on it? The linear density (mass per unit length) of the wire is 46.6 g/m.

KEY IDEAS

1. Because the wire carries a current, a magnetic force \(\vec{F}_B \) can act on the wire if we place it in a magnetic field \(\vec{B} \).

 To balance the downward gravitational force \(\vec{F}_g \) on the wire, we want \(\vec{F}_B \) to be directed upward (Fig. 28-17). (2)

2. The direction of \(\vec{F}_B \) is related to the directions of \(\vec{B} \) and the wire's length vector \(\vec{L} \) by Eq. 28-26

 \[
 \vec{F}_B = i \vec{L} \times \vec{B}
 \]

![Figure 28-17](image) A wire (shown in cross section) carrying current out of the page.

Calculations:
Because \(\vec{L} \) is directed horizontally (and the current is taken to be positive), Eq. 28-26 and the right-hand rule for cross products tell us that \(\vec{B} \) must be horizontal and rightward (in Fig. 28-17) to give the required upward \(\vec{F}_B \).

The magnitude of \(\vec{F}_B \) is \(F_B = iLB \) (Eq. 28-27). Because we want \(\vec{F}_B \) to balance \(\vec{F}_g \), we want

\[
iLB \sin \phi = mg,
\]

where \(mg \) is the magnitude of \(\vec{F}_g \) and \(m \) is the mass of the wire.

We also want the minimal field magnitude \(B \) for \(\vec{F}_B \) to balance \(\vec{F}_g \). Thus, we need to maximize \(\sin \phi \) in Eq. 28-29.

To do so, we set \(\phi = 90^\circ \), thereby arranging for \(\vec{B} \) to be perpendicular to the wire. We then have \(\sin = 1 \), so Eq. 28-29 yields

\[
B = \frac{mg}{iL \sin \phi} = \frac{(m/L)g}{i}.
\]

We write the result this way because we know \(m/L \), the linear density of the wire. Substituting known data then gives us

\[
B = \frac{\left(46.6 \times 10^{-3} \text{ kg/m} \right) \left(9.8 \text{ m/s}^2 \right)}{28 \text{ A}} = 1.6 \times 10^{-2} \text{ T}.
\]

This is about 160 times the strength of Earth's magnetic field.

28-9 Torque on a Current Loop

Much of the world's work is done by electric motors. The forces behind this work are the magnetic forces that we studied in the preceding section—that is, the forces that a magnetic field exerts on a wire that carries a current.

Figure 28-18 shows a simple motor, consisting of a single current-carrying loop immersed in a magnetic field \(\vec{B} \). The two magnetic forces \(\vec{F} \) and \(-\vec{F} \) produce a torque on the loop, tending to rotate it about its central axis. Although many essential details have been omitted, the figure does suggest how the action of a magnetic field on a current loop produces rotary motion. Let us analyze that action.
Figure 28-18 The elements of an electric motor. A rectangular loop of wire, carrying a current and free to rotate about a fixed axis, is placed in a magnetic field. Magnetic forces on the wire produce a torque that rotates it. A commutator (not shown) reverses the direction of the current every half-revolution so that the torque always acts in the same direction.

Figure 28-19a shows a rectangular loop of sides a and b, carrying current i through uniform magnetic field \mathbf{B}. We place the loop in the field so that its long sides, labeled 1 and 3, are perpendicular to the field direction (which is into the page), but its short sides, labeled 2 and 4, are not. Wires to lead the current into and out of the loop are needed but, for simplicity, are not shown.

Figure 28-19b shows a right-hand rule for finding the direction of \mathbf{n}, which is perpendicular to the plane of the loop. (c) A side view of the loop, from side 2. The loop rotates as indicated.

To define the orientation of the loop in the magnetic field, we use a normal vector \mathbf{n} that is perpendicular to the plane of the loop. Figure 28-19b shows a right-hand rule for finding the direction of \mathbf{n}. Point or curl the fingers of your right hand in the direction of the current at any point on the loop. Your extended thumb then points in the direction of the normal vector \mathbf{n}.

In Fig. 28-19c, the normal vector of the loop is shown at an arbitrary angle θ to the direction of the magnetic field \mathbf{B}. We wish to find the net force and net torque acting on the loop in this orientation.
The net force on the loop is the vector sum of the forces acting on its four sides. For side 2 the vector \(\vec{L} \) in Eq. 28-26 points in the direction of the current and has magnitude \(b \). The angle between \(\vec{L} \) and \(\vec{B} \) for side 2 (see Fig. 28-19c) is \(90^\circ - \theta \). Thus, the magnitude of the force acting on this side is

\[
F_2 = ibB \sin (90^\circ - \theta) = ibB \cos \theta.
\]

(28-31)

You can show that the force \(\vec{F}_4 \) acting on side 4 has the same magnitude as \(\vec{F}_2 \) but the opposite direction. Thus, \(\vec{F}_2 \) and \(\vec{F}_4 \) cancel out exactly. Their net force is zero and, because their common line of action is through the center of the loop, their net torque is also zero.

The situation is different for sides 1 and 3. For them, \(\vec{L} \) is perpendicular to \(\vec{B} \), so the forces \(\vec{F}_1 \) and \(\vec{F}_3 \) have the common magnitude \(iaB \). Because these two forces have opposite directions, they do not tend to move the loop up or down. However, as Fig. 28-19c shows, these two forces do not share the same line of action; so they do produce a net torque. The torque tends to rotate the loop so as to align its normal vector \(\vec{n} \) with the direction of the magnetic field \(\vec{B} \). That torque has moment arm \((b/2)\sin \theta\) about the central axis of the loop. The magnitude \(\tau' \) of the torque due to forces \(\vec{F}_1 \) and \(\vec{F}_3 \) is then (see Fig. 28-19c)

\[
\tau' = \left(iaB \frac{b}{2} \sin \theta \right) + \left(iaB \frac{b}{2} \sin \theta \right) = iabB \sin \theta.
\]

(28-32)

Suppose we replace the single loop of current with a coil of \(N \) loops, or turns. Further, suppose that the turns are wound tightly enough that they can be approximated as all having the same dimensions and lying in a plane. Then the turns form a flat coil, and a torque \(\tau' \) with the magnitude given in Eq. 28-32 acts on each of them. The total torque on the coil then has magnitude

\[
\tau = N \tau' = N(iabB \sin \theta) = (NiA)B \sin \theta,
\]

(28-33)

in which \(A = ab \) is the area enclosed by the coil. The quantities in parentheses \((NiA)\) are grouped together because they are all properties of the coil: its number of turns, its area, and the current it carries. Equation 28-33 holds for all flat coils, no matter what their shape, provided the magnetic field is uniform. For example, for the common circular coil, with radius \(r \), we have

\[
\tau = \left(Ni \pi r^2 \right) B \sin \theta.
\]

(28-34)

Instead of focusing on the motion of the coil, it is simpler to keep track of the vector \(\vec{n} \), which is normal to the plane of the coil. Equation 28-33 tells us that a current-carrying flat coil placed in a magnetic field will tend to rotate so that \(\vec{n} \) has the same direction as the field. In a motor, the current in the coil is reversed as \(\vec{n} \) begins to line up with the field direction, so that a torque continues to rotate the coil. This automatic reversal of the current is done via a commutator that electrically connects the rotating coil with the stationary contacts on the wires that supply the current from some source.

28-10

The Magnetic Dipole Moment

As we have just discussed, a torque acts to rotate a current-carrying coil placed in a magnetic field. In that sense, the coil behaves like a bar magnet placed in the magnetic field. Thus, like a bar magnet, a current-carrying coil is said to be a magnetic dipole. Moreover, to account for the torque on the coil due to the magnetic field, we assign a magnetic dipole moment \(\vec{\mu} \) to the coil. The direction of \(\vec{\mu} \) is that of the normal vector \(\vec{n} \) to the plane of the coil and thus is given by the same right-hand rule shown in Fig. 28-19. That is, grasp the coil with the fingers of your right hand in the direction of current \(i \); the outstretched thumb of that hand gives the direction of \(\vec{\mu} \). The magnitude of \(\vec{\mu} \) is given by

\[
\mu = NiA \quad \text{(magnetic moment)}
\]

(28-35)

in which \(N \) is the number of turns in the coil, \(i \) is the current through the coil, and \(A \) is the area enclosed by each turn of the coil. From this equation, with \(i \) in amperes and \(A \) in square meters, we see that the unit of \(\vec{\mu} \) is the ampere–square meter (A · m²).
Using $\vec{\mu}$, we can rewrite Eq. 28-33 for the torque on the coil due to a magnetic field as

$$\tau = \mu B \sin \theta,$$

(28-36)
in which θ is the angle between the vectors $\vec{\mu}$ and \vec{B}.

We can generalize this to the vector relation

$$\vec{\tau} = \vec{\mu} \times \vec{B},$$

(28-37)
which reminds us very much of the corresponding equation for the torque exerted by an electric field on an electric dipole—namely, Eq. 22-34:

$$\vec{\tau} = \vec{p} \times \vec{E}.$$

In each case the torque due to the field—either magnetic or electric—is equal to the vector product of the corresponding dipole moment and the field vector.

A magnetic dipole in an external magnetic field has an energy that depends on the dipole's orientation in the field. For electric dipoles we have shown (Eq. 22-38) that

$$U(\theta) = -\vec{p} \cdot \vec{E}.$$

In strict analogy, we can write for the magnetic case

$$U(\theta) = -\vec{\mu} \cdot \vec{B},$$

(28-38)
In each case the energy due to the field is equal to the negative of the scalar product of the corresponding dipole moment and the field vector.

A magnetic dipole has its lowest energy ($= -\mu B \cos 0 = -\mu B$) when its dipole moment $\vec{\mu}$ is lined up with the magnetic field (Fig. 28-20). It has its highest energy ($= -\mu B \cos 180^\circ = +\mu B$) when $\vec{\mu}$ is directed opposite the field. From Eq. 28-38, with U in joules and \vec{B} in teslas, we see that the unit of $\vec{\mu}$ can be the joule per tesla (J/T) instead of the ampere–square meter as suggested by Eq. 28-35.

![The magnetic moment vector attempts to align with the magnetic field.](image)

Figure 28-20 The orientations of highest and lowest energy of a magnetic dipole (here a coil carrying current) in an external magnetic field \vec{B}. The direction of the current i gives the direction of the magnetic dipole moment $\vec{\mu}$ via the right-hand rule shown for \vec{n} in Fig. 28-19b.

If an applied torque (due to “an external agent”) rotates a magnetic dipole from an initial orientation θ_i to another orientation θ_f, then work W_a is done on the dipole by the applied torque. If the dipole is stationary before and after the change in its orientation, then work W_a is

$$W_a = U_f - U_i,$$

(28-39)
where U_f and U_i are calculated with Eq. 28-38.

So far, we have identified only a current-carrying coil as a magnetic dipole. However, a simple bar magnet is also a magnetic dipole, as is a rotating sphere of charge. Earth itself is (approximately) a magnetic dipole. Finally, most subatomic particles, including the electron, the proton, and the neutron, have magnetic dipole moments. As you will see in Chapter 32, all these quantities can be viewed as current loops. For comparison, some approximate magnetic dipole moments are shown in Table 28-2.

<table>
<thead>
<tr>
<th>Magnetic Dipole</th>
<th>Dipole Moment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small bar magnet</td>
<td>5 J/T</td>
</tr>
<tr>
<td>Earth</td>
<td>8.0×10^{22} J/T</td>
</tr>
<tr>
<td>Proton</td>
<td>1.4×10^{-26} J/T</td>
</tr>
<tr>
<td>Electron</td>
<td>9.3×10^{-24} J/T</td>
</tr>
</tbody>
</table>

CHECKPOINT 5

The figure shows four orientations, at angle θ, of a magnetic dipole moment $\vec{\mu}$ in a magnetic field. Rank the orientations according to (a) the magnitude of the torque on the dipole and (b) the orientation energy of the dipole, greatest first.

Rotating a magnetic dipole in a magnetic field

Figure 28-21 shows a circular coil with 250 turns, an area A of 2.52×10^{-4} m2, and a current of 100 μA. The coil is at rest in a uniform magnetic field of magnitude $B = 0.85$ T, with its magnetic dipole moment $\vec{\mu}$ initially aligned with \vec{B}.

(a) In Fig. 28-21, what is the direction of the current in the coil?

Right-hand rule:

Imagine cupping the coil with your right hand so that your right thumb is outstretched in the direction of $\vec{\mu}$. The
direction in which your fingers curl around the coil is the direction of the current in the coil. Thus, in the wires on
the near side of the coil—those we see in Fig. 28-21—the current is from top to bottom.

(b) How much work would the torque applied by an external agent have to do on the coil to rotate it 90° from its initial
orientation, so that \(\vec{B} \) is perpendicular to \(\vec{B} \) and the coil is again at rest?

KEY IDEA

The work \(W_a \) done by the applied torque would be equal to the change in the coil’s orientation energy due to its
change in orientation.

Calculations:

From Eq. 28-39 \((W_a = U_f - U_i)\), we find

\[
W_a = U(90°) - U(0°) \\
= - \mu B \cos 90° - (- \mu B \cos 0°) = 0 + \mu B \\
= \mu B.
\]

Substituting for \(\mu \) from Eq. 28-35 \((\mu = NiA)\), we find that

\[
W_a = (NiA)B \\
= (250)(100 \times 10^{-6} A)(2.52 \times 10^{-4} m^2)(0.85 T) \\
= 5.355 \times 10^{-6} J \approx 5.4 \mu J.
\]

Magnetic Field \(\vec{B} \) is defined in terms of the force \(\vec{F} \) acting on a test particle with charge \(q \) moving through the field with velocity \(\vec{v} \):

\[
\vec{F} = q \vec{v} \times \vec{B}. \tag{28-2}
\]

The SI unit for \(\vec{B} \) is the tesla (T): 1 T = 1 N/(A \cdot m) = 10^4 gauss.

The Hall Effect When a conducting strip carrying a current \(i \) is placed in a uniform magnetic field \(\vec{B} \), some charge carriers
(with charge \(e \)) build up on one side of the conductor, creating a potential difference \(V \) across the strip. The polarities of the
sides indicate the sign of the charge carriers.

A Charged Particle Circulating in a Magnetic Field A charged particle with mass \(m \) and charge magnitude \(|q| \)
moving with velocity \(\vec{v} \) perpendicular to a uniform magnetic field \(\vec{B} \) will travel in a circle. Applying Newton's second law to
the circular motion yields
from which we find the radius r of the circle to be

$$r = \frac{m \nu}{|q|B}.$$ \hfill (28-16)

The frequency of revolution f, the angular frequency ω, and the period of the motion T are given by

$$f = \frac{\omega}{2\pi} = \frac{1}{T} = \frac{|q|B}{2\pi m}.$$ \hfill (28-19, 28-18, 28-17)

Magnetic Force on a Current-Carrying Wire

A straight wire carrying a current i in a uniform magnetic field experiences a sideways force

$$\vec{F}_B = i \vec{L} \times \vec{B}.$$ \hfill (28-26)

The force acting on a current element $i \, d\vec{L}$ in a magnetic field is

$$d\vec{F}_B = i \, d\vec{L} \times \vec{B}.$$ \hfill (28-28)

The direction of the length vector \vec{L} or $d\vec{L}$ is that of the current i.

Torque on a Current-Carrying Coil

A coil (of area A and N turns, carrying current i) in a uniform magnetic field \vec{B} will experience a torque $\vec{\tau}$ given by

$$\vec{\tau} = \vec{\mu} \times \vec{B}.$$ \hfill (28-37)

Here $\vec{\mu}$ is the **magnetic dipole moment** of the coil, with magnitude $\mu = NiA$ and direction given by the right-hand rule.

Orientation Energy of a Magnetic Dipole

The orientation energy of a magnetic dipole in a magnetic field is

$$U(\theta) = -\vec{\mu} \cdot \vec{B}.$$ \hfill (28-38)

If an external agent rotates a magnetic dipole from an initial orientation θ_i to some other orientation θ_f and the dipole is stationary both initially and finally, the work W_a done on the dipole by the agent is

$$W_a = \Delta U = U_f - U_i.$$ \hfill (28-39)
2. Figure 28-23 shows a wire that carries current to the right through a uniform magnetic field. It also shows four choices for the direction of that field. (a) Rank the choices according to the magnitude of the electric potential difference that would be set up across the width of the wire, greatest first. (b) For which choice is the top side of the wire at higher potential than the bottom side of the wire?

3. Figure 28-24 shows a metallic, rectangular solid that is to move at a certain speed v through the uniform magnetic field \vec{B}. The dimensions of the solid are multiples of d, as shown. You have six choices for the direction of the velocity: parallel to x, y, or z in either the positive or negative direction. (a) Rank the six choices according to the potential difference set up across the solid, greatest first. (b) For which choice is the front face at lower potential?

4. Figure 28-25 shows the path of a particle through six regions of uniform magnetic field, where the path is either a half-circle or a quarter-circle. Upon leaving the last region, the particle travels between two charged, parallel plates and is deflected toward the plate of higher potential. What is the direction of the magnetic field in each of the six regions?
In Section 28-4, we discussed a charged particle moving through crossed fields with the forces \vec{F}_E and \vec{F}_B in opposition. We found that the particle moves in a straight line (that is, neither force dominates the motion) if its speed is given by Eq. 28-7 ($v = E/B$). Which of the two forces dominates if the speed of the particle is (a) $v < E/B$ and (b) $v > E/B$?

Figure 28-26 shows crossed uniform electric and magnetic fields \vec{E} and \vec{B} and, at a certain instant, the velocity vectors of the 10 charged particles listed in Table 28-3. (The vectors are not drawn to scale.) The speeds given in the table are either less than or greater than E/B (see Question 5). Which particles will move out of the page toward you after the instant shown in Fig. 28-26?

Table 28-3 Question 6

<table>
<thead>
<tr>
<th>Particle</th>
<th>Charge</th>
<th>Speed</th>
<th>Particle</th>
<th>Charge</th>
<th>Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+</td>
<td>Less</td>
<td>6</td>
<td>-</td>
<td>Greater</td>
</tr>
<tr>
<td>2</td>
<td>+</td>
<td>Greater</td>
<td>7</td>
<td>+</td>
<td>Less</td>
</tr>
<tr>
<td>3</td>
<td>+</td>
<td>Less</td>
<td>8</td>
<td>+</td>
<td>Greater</td>
</tr>
<tr>
<td>4</td>
<td>+</td>
<td>Greater</td>
<td>9</td>
<td>-</td>
<td>Less</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>Less</td>
<td>10</td>
<td>-</td>
<td>Greater</td>
</tr>
</tbody>
</table>

Figure 28-27 shows the path of an electron that passes through two regions containing uniform magnetic fields of magnitudes B_1 and B_2. Its path in each region is a half-circle. (a) Which field is stronger? (b) What is the direction of each field? (c) Is the time spent by the electron in the B_1 region greater than, less than, or the same as the time spent in the B_2 region?

Figure 28-28 shows the path of an electron in a region of uniform magnetic field. The path consists of two straight sections, each between a pair of uniformly charged plates, and two half-circles. Which plate is at the higher electric potential in (a) the top pair of plates and (b) the bottom pair? (c) What is the direction of the magnetic field?
(a) In Checkpoint 5, if the dipole moment \(\vec{\mu} \) is rotated from orientation 2 to orientation 1 by an external agent, is the work done on the dipole by the agent positive, negative, or zero? (b) Rank the work done on the dipole by the agent for these three rotations, greatest first: 2 \(\rightarrow \) 1, 2 \(\rightarrow \) 4, 2 \(\rightarrow \) 3.

Particle roundabout. Figure 28-29 shows 11 paths through a region of uniform magnetic field. One path is a straight line; the rest are half-circles. Table 28-4 gives the masses, charges, and speeds of 11 particles that take these paths through the field in the directions shown. Which path in the figure corresponds to which particle in the table? (The direction of the magnetic field can be determined by means of one of the paths, which is unique.)

![Figure 28-29](image)

Table 28-4 Question 10

<table>
<thead>
<tr>
<th>Particle</th>
<th>Mass</th>
<th>Charge</th>
<th>Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2m</td>
<td>q</td>
<td>(\nu)</td>
</tr>
<tr>
<td>2</td>
<td>m</td>
<td>2q</td>
<td>(\nu)</td>
</tr>
<tr>
<td>3</td>
<td>(m/2)</td>
<td>q</td>
<td>(2\nu)</td>
</tr>
<tr>
<td>4</td>
<td>3m</td>
<td>3q</td>
<td>(3\nu)</td>
</tr>
<tr>
<td>5</td>
<td>2m</td>
<td>q</td>
<td>(2\nu)</td>
</tr>
<tr>
<td>6</td>
<td>m</td>
<td>-q</td>
<td>(2\nu)</td>
</tr>
<tr>
<td>7</td>
<td>m</td>
<td>-4q</td>
<td>(\nu)</td>
</tr>
<tr>
<td>8</td>
<td>m</td>
<td>-q</td>
<td>(\nu)</td>
</tr>
<tr>
<td>9</td>
<td>2m</td>
<td>-2q</td>
<td>(3\nu)</td>
</tr>
<tr>
<td>10</td>
<td>m</td>
<td>-2q</td>
<td>8(\nu)</td>
</tr>
<tr>
<td>11</td>
<td>3m</td>
<td>0</td>
<td>3(\nu)</td>
</tr>
</tbody>
</table>

In Fig. 28-30, a charged particle enters a uniform magnetic field \(\vec{B} \) with speed \(\nu_0 \), moves through a half-circle in time \(T_0 \), and then leaves the field. (a) Is the charge positive or negative? (b) Is the final speed of the particle greater than, less than, or equal to \(\nu_0 \)? (c) If the initial speed had been 0.5\(\nu_0 \), would the time spent in field \(\vec{B} \) have been greater than, less than, or equal to \(T_0 \)? (d) Would the path have been a half-circle, more than a half-circle, or less than a half-circle?
sec. 28-3 The Definition of \mathbf{B}

1. A proton traveling at 23.0° with respect to the direction of a magnetic field of strength 2.60 mT experiences a magnetic force of $6.50 \times 10^{-17} \text{ N}$. Calculate (a) the proton's speed and (b) its kinetic energy in electron-volts.

2. A particle of mass 10 g and charge $80 \mu\text{C}$ moves through a uniform magnetic field, in a region where the free-fall acceleration is 9.8 m/s^2. The velocity of the particle is a constant 20 km/s, which is perpendicular to the magnetic field. What, then, is the magnetic field?

3. An electron that has velocity $\mathbf{v} = (2.0 \times 10^6 \text{ m/s}) \mathbf{i} + (3.0 \times 10^6 \text{ m/s}) \mathbf{j}$ moves through the uniform magnetic field $\mathbf{B} = (0.030 \text{ T}) \mathbf{i} - (0.15 \text{ T}) \mathbf{j}$. (a) Find the force on the electron due to the magnetic field. (b) Repeat your calculation for a proton having the same velocity.

4. An alpha particle travels at a velocity \mathbf{v} of magnitude 550 m/s through a uniform magnetic field \mathbf{B} of magnitude 0.045 T. (An alpha particle has a charge of $+3.2 \times 10^{-19} \text{ C}$ and a mass of $6.6 \times 10^{-27} \text{ kg}$.) The angle between \mathbf{v} and \mathbf{B} is 52°. What is the magnitude of (a) the force \mathbf{F} acting on the particle due to the field and (b) the acceleration of the particle due to \mathbf{F}? (c) Does the speed of the particle increase, decrease, or remain the same?

5. An electron moves through a uniform magnetic field given by $\mathbf{B} = B_x \mathbf{i} + (3.0B_x) \mathbf{j}$. At a particular instant, the electron has velocity $\mathbf{v} = (2.0 \mathbf{i} + 4.0 \mathbf{j}) \text{ m/s}$ and the magnetic force acting on it is $6.4 \times 10^{-19} \text{ N} \mathbf{k}$. Find B_x.

6. A proton moves through a uniform magnetic field given by $\mathbf{B} = (10 \mathbf{i} - 20 \mathbf{j} + 30 \mathbf{k}) \text{ mT}$. At time t_1, the proton has a velocity given by $\mathbf{v} = (2.0 \mathbf{k}) \text{ km/s}$ and the magnetic force on the proton is $\mathbf{F} = (4.0 \times 10^{-17} \text{ N}) \mathbf{i} + (2.0 \times 10^{-17} \text{ N}) \mathbf{j}$. At that instant, what are (a) v_x and (b) v_y?

sec. 28-4 Crossed Fields: Discovery of the Electron

7.

Figure 28-30 Question 11.
An electron has an initial velocity of \((12.0 \hat{j} + 15.0 \hat{k}) \text{ km/s} \) and a constant acceleration of \((2.00 \times 10^{12} \text{ m/s}^2) \hat{i} \) in a region in which uniform electric and magnetic fields are present. If \(\vec{B} = (400 \text{ } \mu \text{ T}) \hat{i} \), find the electric field \(\vec{E} \).

8. An electric field of 1.50 kV/m and a perpendicular magnetic field of 0.400 T act on a moving electron to produce no net force. What is the electron's speed?

9. In Fig. 28-31, an electron accelerated from rest through potential difference \(V_1 = 1.00 \text{ kV} \) enters the gap between two allel plates having separation \(d = 20.0 \text{ mm} \) and potential difference \(V_2 = 100 \text{ V} \). The lower plate is at the lower potential. Neglect fringing and assume that the electron's velocity vector is perpendicular to the electric field vector between the plates. In unit-vector notation, what uniform magnetic field allows the electron to travel in a straight line in the gap?

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure28-31}
\caption{Figure 28-31 Problem 9.}
\end{figure}

10. A proton travels through uniform magnetic and electric fields. The magnetic field is \(\vec{B} = -2.50 \hat{i} \text{ mT} \). At one instant the velocity of the proton is \(\vec{v} = 2000 \hat{j} \text{ m/s} \). At that instant and in unit-vector notation, what is the net force acting on the proton if the electric field is (a) \(4.00 \hat{k} \text{ V/m} \), (b) \(-4.00 \hat{k} \text{ V/m} \), and (c) \(4.00 \hat{i} \text{ V/m} \)?

11. An ion source is producing \(^6\text{Li}\) ions, which have charge \(+e \) and mass \(9.99 \times 10^{-27} \text{ kg} \). The ions are accelerated by a potential difference of 10 kV and pass horizontally into a region in which there is a uniform vertical magnetic field of magnitude \(B = 1.2 \text{ T} \). Calculate the strength of the smallest electric field, to be set up over the same region, that will allow the \(^6\text{Li}\) ions to pass through undeflected.

12. At time \(t_1 \), an electron is sent along the positive direction of an \(x \) axis, through both an electric field \(\vec{E} \) and a magnetic field \(\vec{B} \), with \(\vec{E} \) directed parallel to the \(y \) axis. Figure 28-32 gives the \(y \) component \(F_{\text{net},y} \) of the net force on the electron due to the two fields, as a function of the electron's speed \(v \) at time \(t_1 \). The scale of the velocity axis is set by \(v_s = 100.0 \text{ m/s} \). The \(x \) and \(z \) components of the net force are zero at \(t_1 \). Assuming \(B_z = 0 \), find (a) the magnitude \(E \) and (b) \(B \) in unit-vector notation.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure28-32}
\caption{Figure 28-32 Problem 12.}
\end{figure}

sec. 28-5 Crossed Fields: The Hall Effect

13. A strip of copper 150 \(\mu \text{m} \) thick and 4.5 mm wide is placed in a uniform magnetic field \(\vec{B} \) of magnitude 0.65 T, with \(\vec{B} \) perpendicular to the strip. A current \(i = 23 \text{ A} \) is then sent through the strip such that a Hall potential difference \(V \) appears across the width of the strip. Calculate \(V \). (The number of charge carriers per unit volume for copper is \(8.47 \times 10^{28} \text{ electrons/m}^3 \).)
A metal strip 6.50 cm long, 0.850 cm wide, and 0.760 mm thick moves with constant velocity \(\vec{v} \) through a uniform magnetic field \(B = 1.20 \text{ mT} \) directed perpendicular to the strip, as shown in Fig. 28-33. A potential difference of 3.90 \(\mu \text{V} \) is measured between points \(x \) and \(y \) across the strip. Calculate the speed \(v \).

![Figure 28-33](image)

Problem 14.

In Fig. 28-34, a conducting rectangular solid of dimensions \(d_x = 5.00 \text{ m}, d_y = 3.00 \text{ m}, \) and \(d_z = 2.00 \text{ m} \) moves at constant velocity \(\vec{v} = \left\{ 20.0 \text{ m/s} \right\} \) through a uniform magnetic field \(\vec{B} = \left\{ 30.0 \text{ mT} \right\} \). What are the resulting (a) electric field within the solid, in unit-vector notation, and (b) potential difference across the solid?

![Figure 28-34](image)

Problems 15 and 16.

Figure 28-34 shows a metallic block, with its faces parallel to coordinate axes. The block is in a uniform magnetic field of magnitude 0.020 T. One edge length of the block is 25 cm; the block is not drawn to scale. The block is moved at 3.0 m/s parallel to each axis, in turn, and the resulting potential difference \(V \) that appears across the block is measured. With the motion parallel to the \(y \) axis, \(V = 12 \text{ mV} \); with the motion parallel to the \(z \) axis, \(V = 18 \text{ mV} \); with the motion parallel to the \(x \) axis, \(V = 0 \). What are the block lengths (a) \(d_x \), (b) \(d_y \), and (c) \(d_z \)?

sec. 28-6 A Circulating Charged Particle

An alpha particle can be produced in certain radioactive decays of nuclei and consists of two protons and two neutrons. The particle has a charge of \(q = +2e \) and a mass of 4.00 u, where u is the atomic mass unit, with 1 u = 1.661 \times 10^{-27} \text{ kg}. Suppose an alpha particle travels in a circular path of radius 4.50 cm in a uniform magnetic field with \(B = 1.20 \text{ T} \). Calculate (a) its speed, (b) its period of revolution, (c) its kinetic energy, and (d) the potential difference through which it would have to be accelerated to achieve this energy.

In Fig. 28-35, a particle moves along a circle in a region of uniform magnetic field of magnitude \(B = 4.00 \text{ mT} \). The particle is either a proton or an electron (you must decide which). It experiences a magnetic force of magnitude \(3.20 \times 10^{-15} \text{ N} \). What are (a) the particle's speed, (b) the radius of the circle, and (c) the period of the motion?

![Figure 28-35](image)

Problem 18.
19 A certain particle is sent into a uniform magnetic field, with the particle's velocity vector perpendicular to the direction of the field. Figure 28-36 gives the period T of the particle's motion versus the inverse of the field magnitude B. The vertical axis scale is set by $T_s = 40.0$ ns, and the horizontal axis scale is set by $B_s^{-1} = 5.0$ T$^{-1}$. What is the ratio m/q of the particle's mass to the magnitude of its charge?

![Figure 28-36](Problem 19.)

20 An electron is accelerated from rest through potential difference V and then enters a region of uniform magnetic field, where it undergoes uniform circular motion. Figure 28-37 gives the radius r of that motion versus $V^{1/2}$. The vertical axis scale is set by $r_s = 3.0$ mm, and the horizontal axis scale is set by $V_s^{1/2} = 40.0 V^{1/2}$. What is the magnitude of the magnetic field?

![Figure 28-37](Problem 20.)

21 SSM An electron of kinetic energy 1.20 keV circles in a plane perpendicular to a uniform magnetic field. The orbit radius is 25.0 cm. Find (a) the electron's speed, (b) the magnetic field magnitude, (c) the circling frequency, and (d) the period of the motion.

22 In a nuclear experiment a proton with kinetic energy 1.0 MeV moves in a circular path in a uniform magnetic field. What energy must (a) an alpha particle $(q = +2e, m = 4.0$ u) and (b) a deuteron $(q = +e, m = 2.0$ u) have if they are to circulate in the same circular path?

23 What uniform magnetic field, applied perpendicular to a beam of electrons moving at 1.30×10^6 m/s, is required to make the electrons travel in a circular arc of radius 0.350 m?

24 An electron is accelerated from rest by a potential difference of 350 V. It then enters a uniform magnetic field of magnitude 200 mT with its velocity perpendicular to the field. Calculate (a) the speed of the electron and (b) the radius of its path in the magnetic field.

25 (a) Find the frequency of revolution of an electron with an energy of 100 eV in a uniform magnetic field of magnitude 35.0 μT. (b) Calculate the radius of the path of this electron if its velocity is perpendicular to the magnetic field.

26 In Fig. 28-38, a charged particle moves into a region of uniform magnetic field \vec{B}, goes through half a circle, and then exits that region. The particle is either a proton or an electron (you must decide which). It spends 130 ns in the region. (a) What
is the magnitude of \mathbf{B}? (b) If the particle is sent back through the magnetic field (along the same initial path) but with 2.00 times its previous kinetic energy, how much time does it spend in the field during this trip?

![Figure 28-38](image)

Problem 26.

27 A mass spectrometer (Fig. 28-12) is used to separate uranium ions of mass 3.92×10^{-25} kg and charge 3.20×10^{-19} C from related species. The ions are accelerated through a potential difference of 100 kV and then pass into a uniform magnetic field, where they are bent in a path of radius 1.00 m. After traveling through 180° and passing through a slit of width 1.00 mm and height 1.00 cm, they are collected in a cup. (a) What is the magnitude of the (perpendicular) magnetic field in the separator? If the machine is used to separate out 100 mg of material per hour, calculate (b) the current of the desired ions in the machine and (c) the thermal energy produced in the cup in 1.00 h.

28 A particle undergoes uniform circular motion of radius 26.1 μm in a uniform magnetic field. The magnetic force on the particle has a magnitude of 1.60×10^{-17} N. What is the kinetic energy of the particle?

29 An electron follows a helical path in a uniform magnetic field of magnitude 0.300 T. The pitch of the path is 6.00 μm, and the magnitude of the magnetic force on the electron is 2.00×10^{-15} N. What is the electron's speed?

30 In Fig. 28-39, an electron with an initial kinetic energy of 4.0 keV enters region 1 at time $t = 0$. That region contains a uniform magnetic field directed into the page, with magnitude 0.010 T. The electron goes through a half-circle and then exits region 1, headed toward region 2 across a gap of 25.0 cm. There is an electric potential difference $\Delta V = 2000$ V across the gap, with a polarity such that the electron's speed increases uniformly as it traverses the gap. Region 2 contains a uniform magnetic field directed out of the page, with magnitude 0.020 T. The electron goes through a half-circle and then leaves region 2. At what time t does it leave?

![Figure 28-39](image)

Problem 30.

31 A particular type of fundamental particle decays by transforming into an electron e^- and a positron e^+. Suppose the decaying particle is at rest in a uniform magnetic field \mathbf{B} of magnitude 3.53 mT and the e^- and e^+ move away from the decay point in paths lying in a plane perpendicular to \mathbf{B}. How long after the decay do the e^- and e^+ collide?

32 A source injects an electron of speed $v = 1.5 \times 10^7$ m/s into a uniform magnetic field of magnitude $B = 1.0 \times 10^{-3}$ T. The velocity of the electron makes an angle $\theta = 10^\circ$ with the direction of the magnetic field. Find the distance d from the point of injection at which the electron next crosses the field line that passes through the injection point.

33 A positron with kinetic energy 2.00 keV is projected into a uniform magnetic field \mathbf{B} of magnitude 0.100 T, with its velocity vector making an angle of 89.0° with \mathbf{B}. Find (a) the period, (b) the pitch p, and (c) the radius r of its helical path.

34 An electron follows a helical path in a uniform magnetic field given by $\mathbf{B} = (20\hat{i} - 50\hat{j} - 30\hat{k})$ mT. At time $t = 0$, the
electron's velocity is given by \(\vec{v} = \left(20\hat{i} - 30\hat{j} + 50\hat{k}\right) \text{ m/s} \). (a) What is the angle between \(\vec{v} \) and \(\vec{B} \)? The electron's velocity changes with time. Do (b) its speed and (c) the angle change with time? (d) What is the radius of the helical path?

sec. 28-7 Cyclotrons and Synchrotrons

• **35** A proton circulates in a cyclotron, beginning approximately at rest at the center. Whenever it passes through the gap between dees, the electric potential difference between the dees is 200 V. (a) By how much does its kinetic energy increase with each passage through the gap? (b) What is its kinetic energy as it completes 100 passes through the gap? Let \(r_{100} \) be the radius of the proton's circular path as it completes those 100 passes and enters a dee, and let \(r_{101} \) be its next radius, as it enters a dee the next time. (c) By what percentage does the radius increase when it changes from \(r_{100} \) to \(r_{101} \)? That is, what is the percentage increase:

\[
\text{percentage increase} = \frac{r_{101} - r_{100}}{r_{100}} \times 100\%
\]

• **36** A cyclotron with dee radius 53.0 cm is operated at an oscillator frequency of 12.0 MHz to accelerate protons. (a) What magnitude \(B \) of magnetic field is required to achieve resonance? (b) At that field magnitude, what is the kinetic energy of a proton emerging from the cyclotron? Suppose, instead, that \(B = 1.57 \) T. (c) What oscillator frequency is required to achieve resonance now? (d) At that frequency, what is the kinetic energy of an emerging proton?

• **37** Estimate the total path length traveled by a deuteron in a cyclotron of radius 53 cm and operating frequency 12 MHz during the (entire) acceleration process. Assume that the accelerating potential between the dees is 80 kV.

• **38** In a certain cyclotron a proton moves in a circle of radius 0.500 m. The magnitude of the magnetic field is 1.20 T. (a) What is the oscillator frequency? (b) What is the kinetic energy of the proton, in electron-volts?

sec. 28-8 Magnetic Force on a Current-Carrying Wire

• **39 SSM** A horizontal power line carries a current of 5000 A from south to north. Earth's magnetic field (60.0 \(\mu \)T) is directed toward the north and inclined downward at 70.0° to the horizontal. Find the (a) magnitude and (b) direction of the magnetic force on 100 m of the line due to Earth's field.

• **40** A wire 1.80 m long carries a current of 13.0 A and makes an angle of 35.0° with a uniform magnetic field of magnitude \(B = 1.50 \) T. Calculate the magnetic force on the wire.

• **41 LW** A 13.0 g wire of length \(L = 62.0 \) cm is suspended by a pair of flexible leads in a uniform magnetic field of magnitude 0.440 T (Fig. 28-40). What are the (a) magnitude and (b) direction (left or right) of the current required to remove the tension in the supporting leads?

![Figure 28-40](https://example.com/figure28-40.png)

Figure 28-40 Problem 41.

• **42** The bent wire shown in Fig. 28-41 lies in a uniform magnetic field. Each straight section is 2.0 m long and makes an angle of \(\theta = 60° \) with the x axis, and the wire carries a current of 2.0 A. What is the net magnetic force on the wire in unit-vector notation if the magnetic field is given by (a) \(4.0\hat{k} \) T and (b) \(4.0\hat{i} \) T?
43 A single-turn current loop, carrying a current of 4.00 A, is in the shape of a right triangle with sides 50.0, 120, and 130 cm. The loop is in a uniform magnetic field of magnitude 75.0 mT whose direction is parallel to the current in the 130 cm side of the loop. What is the magnitude of the magnetic force on (a) the 130 cm side, (b) the 50.0 cm side, and (c) the 120 cm side? (d) What is the magnitude of the net force on the loop?

44 Figure 28-42 shows a wire ring of radius \(a = 1.8\) cm that is perpendicular to the general direction of a radially symmetric, diverging magnetic field. The magnetic field at the ring is everywhere of the same magnitude \(B = 3.4\) mT, and its direction at the ring everywhere makes an angle \(\theta = 20^\circ\) with a normal to the plane of the ring. The twisted lead wires have no effect on the problem. Find the magnitude of the force the field exerts on the ring if the ring carries a current \(i = 4.6\) mA.

45 A wire 50.0 cm long carries a 0.500 A current in the positive direction of an \(x\) axis through a magnetic field \(\vec{B} = (3.00\,\text{mT})\hat{j} + (10.0\,\text{mT})\hat{k}\). In unit-vector notation, what is the magnetic force on the wire?

46 In Fig. 28-43, a metal wire of mass \(m = 24.1\) mg can slide with negligible friction on two horizontal parallel rails separated by distance \(d = 2.56\) cm. The track lies in a vertical uniform magnetic field of magnitude 56.3 mT. At time \(t = 0\), device \(G\) is connected to the rails, producing a constant current \(i = 9.13\) mA in the wire and rails (even as the wire moves). At \(t = 61.1\) ms, what are the wire’s (a) speed and (b) direction of motion (left or right)?

47 A 1.0 kg copper rod rests on two horizontal rails 1.0 m apart and carries a current of 50 A from one rail to the other. The coefficient of static friction between rod and rails is 0.60. What are the (a) magnitude and (b) angle (relative to the vertical) of the smallest magnetic field that puts the rod on the verge of sliding?

48 A long, rigid conductor, lying along an \(x\) axis, carries a current of 5.0 A in the negative \(x\) direction. A magnetic field \(\vec{B}\) is present, given by \(\vec{B} = 3.0i + 8.0x^2j\) with \(x\) in meters and \(\vec{B}\) in milliteslas. Find, in unit-vector notation, the force on the 2.0 m segment of the conductor that lies between \(x = 1.0\) m and \(x = 3.0\) m.

sec. 28-9 Torque on a Current Loop

49 SSM Figure 28-44 shows a rectangular 20-turn coil of wire, of dimensions 10 cm by 5.0 cm. It carries a current of 0.10 A and is hinged along one long side. It is mounted in the \(xy\) plane, at angle \(\theta = 30^\circ\) to the direction of a uniform magnetic field of magnitude 0.50 T. In unit-vector notation, what is the torque acting on the coil about the hinge line?
50 An electron moves in a circle of radius \(r = 5.29 \times 10^{-11} \) m with speed \(2.19 \times 10^6 \) m/s. Treat the circular path as a current loop with a constant current equal to the ratio of the electron's charge magnitude to the period of the motion. If the circle lies in a uniform magnetic field of magnitude \(B = 7.10 \) mT, what is the maximum possible magnitude of the torque produced on the loop by the field?

51 Figure 28-45 shows a wood cylinder of mass \(m = 0.250 \) kg and length \(L = 0.100 \) m, with \(N = 10.0 \) turns of wire wrapped around it longitudinally, so that the plane of the wire coil contains the long central axis of the cylinder. The cylinder is released on a plane inclined at an angle \(\theta \) to the horizontal, with the plane of the coil parallel to the incline plane. If there is a vertical uniform magnetic field of magnitude \(0.500 \) T, what is the least current \(i \) through the coil that keeps the cylinder from rolling down the plane?

52 In Fig. 28-46, a rectangular loop carrying current lies in the plane of a uniform magnetic field of magnitude \(0.040 \) T. The loop consists of a single turn of flexible conducting wire that is wrapped around a flexible mount such that the dimensions of the rectangle can be changed. (The total length of the wire is not changed.) As edge length \(x \) is varied from approximately zero to its maximum value of approximately 4.0 cm, the magnitude \(\tau \) of the torque on the loop changes. The maximum value of \(\tau \) is \(4.80 \times 10^{-8} \) N·m. What is the current in the loop?

53 Prove that the relation \(\tau = NiAB \sin \theta \) holds not only for the rectangular loop of Fig. 28-19 but also for a closed loop of any shape. (Hint: Replace the loop of arbitrary shape with an assembly of adjacent long, thin, approximately rectangular loops that are nearly equivalent to the loop of arbitrary shape as far as the distribution of current is concerned.)

sec. 28-10 The Magnetic Dipole Moment

54 A magnetic dipole with a dipole moment of magnitude \(0.020 \) J/T is released from rest in a uniform magnetic field of
magnitude 52 mT. The rotation of the dipole due to the magnetic force on it is unimpeded. When the dipole rotates through the orientation where its dipole moment is aligned with the magnetic field, its kinetic energy is 0.80 mJ. (a) What is the initial angle between the dipole moment and the magnetic field? (b) What is the angle when the dipole is next (momentarily) at rest?

55 SSM Two concentric, circular wire loops, of radii \(r_1 = 20.0 \) cm and \(r_2 = 30.0 \) cm, are located in an \(xy \) plane; each carries a clockwise current of 7.00 A (Fig. 28-47). (a) Find the magnitude of the net magnetic dipole moment of the system. (b) Repeat for reversed current in the inner loop.

![Figure 28-47](image)

56 A circular wire loop of radius 15.0 cm carries a current of 2.60 A. It is placed so that the normal to its plane makes an angle of 41.0° with a uniform magnetic field of magnitude 12.0 T. (a) Calculate the magnitude of the magnetic dipole moment of the loop. (b) What is the magnitude of the torque acting on the loop?

57 SSM A circular coil of 160 turns has a radius of 1.90 cm. (a) Calculate the current that results in a magnetic dipole moment of magnitude 2.30 A ⋅ m². (b) Find the maximum magnitude of the torque that the coil, carrying this current, can experience in a uniform 35.0 mT magnetic field.

58 The magnetic dipole moment of Earth has magnitude \(8.00 \times 10^{22} \) J/T. Assume that this is produced by charges flowing in Earth's molten outer core. If the radius of their circular path is 3500 km, calculate the current they produce.

59 A current loop, carrying a current of 5.0 A, is in the shape of a right triangle with sides 30, 40, and 50 cm. The loop is in a uniform magnetic field of magnitude 80 mT whose direction is parallel to the current in the 50 cm side of the loop. Find the magnitude of (a) the magnetic dipole moment of the loop and (b) the torque on the loop.

60 Figure 28-48 shows a current loop \(ABCDEFA \) carrying a current \(i = 5.00 \) A. The sides of the loop are parallel to the coordinate axes shown, with \(AB = 20.0 \) cm, \(BC = 30.0 \) cm, and \(FA = 10.0 \) cm. In unit-vector notation, what is the magnetic dipole moment of this loop? (Hint: Imagine equal and opposite currents \(i \) in the line segment \(AD \); then treat the two rectangular loops \(ABCDA \) and \(ADEFA \).)

![Figure 28-48](image)

61 SSM The coil in Fig. 28-49 carries current \(i = 2.00 \) A in the direction indicated, is parallel to an \(xz \) plane, has 3.00 turns and an area of \(4.00 \times 10^{-3} \) m², and lies in a uniform magnetic field.
What are (a) the orientation energy of the coil in the magnetic field and (b) the torque (in unit-vector notation) on the coil due to the magnetic field?

\[B = (2.00\hat{i} - 3.00\hat{j} - 4.00\hat{k}) \text{ mT} \]

![Figure 28-49](Problem 61.)

In Fig. 28-50a, two concentric coils, lying in the same plane, carry currents in opposite directions. The current in the larger coil 1 is fixed. Current \(i_2 \) in coil 2 can be varied. Figure 28-50b gives the net magnetic moment of the two-coil system as a function of \(i_2 \). The vertical axis scale is set by \(\mu_{\text{net},s} = 2.0 \times 10^{-5} \text{ A} \cdot \text{m}^2 \) and the horizontal axis scale is set by \(i_2,s = 10.0 \text{ mA} \). If the current in coil 2 is then reversed, what is the magnitude of the net magnetic moment of the two-coil system when \(i_2 = 7.0 \text{ mA} \)?

![Figure 28-50](Problem 62.)

A circular loop of wire having a radius of 8.0 cm carries a current of 0.20 A. A vector of unit length and parallel to the dipole moment \(\vec{\mu} \) of the loop is given by \(0.60\hat{i} - 0.80\hat{j} \). (This unit vector gives the orientation of the magnetic dipole moment vector.) If the loop is located in a uniform magnetic field given by \(\vec{B} = (0.25 \text{ T})\hat{i} + (0.30 \text{ T})\hat{k} \), find (a) the torque on the loop (in unit-vector notation) and (b) the orientation energy of the loop.

![Figure 28-51](Problem 63.)

Figure 28-51 gives the orientation energy \(U \) of a magnetic dipole in an external magnetic field \(\vec{B} \), as a function of angle between the directions of \(\vec{B} \) and the dipole moment. The vertical axis scale is set by \(U_s = 2.0 \times 10^{-4} \text{ J} \). The dipole can be rotated about an axle with negligible friction in order that to change \(\phi \). Counterclockwise rotation from \(\phi = 0 \) yields positive values of \(\phi \), and clockwise rotations yield negative values. The dipole is to be released at angle \(\phi = 0 \) with a rotational kinetic energy of \(6.7 \times 10^{-4} \text{ J} \), so that it rotates counterclockwise. To what maximum value of \(\phi \) will it rotate? (In the language of Section 28-6, what value is the turning point in the potential well of Fig. 28-51?)
A wire of length 25.0 cm carrying a current of 4.51 mA is to be formed into a circular coil and placed in a uniform magnetic field \(\vec{B} \) of magnitude 5.71 mT. If the torque on the coil from the field is maximized, what are (a) the angle between \(\vec{B} \) and the coil's magnetic dipole moment and (b) the number of turns in the coil? (c) What is the magnitude of that maximum torque?

Additional Problems

66 A proton of charge \(+e \) and mass \(m \) enters a uniform magnetic field \(\vec{B} \) with an initial velocity \(\vec{v} = \nu 0\hat{x} + \nu 0\hat{y} \). Find an expression in unit-vector notation for its velocity \(\vec{v} \) at any later time \(t \).

67 A stationary circular wall clock has a face with a radius of 15 cm. Six turns of wire are wound around its perimeter; the wire carries a current of 2.0 A in the clockwise direction. The clock is located where there is a constant, uniform external magnetic field of magnitude 70 mT (but the clock still keeps perfect time). At exactly 1:00 P.M., the hour hand of the clock points in the direction of the external magnetic field. (a) After how many minutes will the minute hand point in the direction of the torque on the winding due to the magnetic field? (b) Find the torque magnitude.

68 A wire lying along a \(y \) axis from \(y = 0 \) to \(y = 0.250 \) m carries a current of 2.00 mA in the negative direction of the axis. The wire fully lies in a nonuniform magnetic field that is given by \(\vec{B} = (0.300 \text{T/m})\hat{y} + (0.400 \text{T/m})\hat{y} \). In unit-vector notation, what is the magnetic force on the wire?

69 Atom 1 of mass 35 u and atom 2 of mass 37 u are both singly ionized with a charge of \(+e \). After being introduced into a mass spectrometer (Fig. 28-12) and accelerated from rest through a potential difference \(V = 7.3 \text{kV} \), each ion follows a circular path in a uniform magnetic field of magnitude \(B = 0.50 \text{T} \). What is the distance \(\Delta x \) between the points where the ions strike the detector?

70 An electron with kinetic energy 2.5 keV moving along the positive direction of an \(x \) axis enters a region in which a uniform electric field of magnitude 10 kV/m is in the negative direction of the \(y \) axis. A uniform magnetic field \(\vec{B} \) is to be set up to keep the electron moving along the \(x \) axis, and the direction of \(\vec{B} \) is to be chosen to minimize the required magnitude of \(\vec{B} \). In unit-vector notation, what \(\vec{B} \) should be set up?

71 Physicist S. A. Goudsmit devised a method for measuring the mass of heavy ions by timing their period of revolution in a known magnetic field. A singly charged ion of iodine makes 7.00 rev in a 45.0 mT field in 1.29 ms. Calculate its mass in atomic mass units.

72 A beam of electrons whose kinetic energy is \(K \) emerges from a thin-foil “window” at the end of an accelerator tube. A metal plate at distance \(d \) from this window is perpendicular to the direction of the emerging beam (Fig. 28-52). (a) Show that we can prevent the beam from hitting the plate if we apply a uniform magnetic field such that

\[
\vec{B} \geq \frac{2mK}{e^2d^2},
\]

in which \(m \) and \(e \) are the electron mass and charge. (b) How should \(\vec{B} \) be oriented?

73 At time \(t = 0 \), an electron with kinetic energy 12 keV moves through \(x = 0 \) in the positive direction of an \(x \) axis that is parallel to the horizontal component of Earth's magnetic field \(\vec{B} \). The field's vertical component is downward and has magnitude 55.0 \(\mu \text{T} \). (a) What is the magnitude of the electron's acceleration?
due to \overrightarrow{B}? (b) What is the electron's distance from the x axis when the electron reaches coordinate $x = 20$ cm?

A particle with charge 2.0 C moves through a uniform magnetic field. At one instant the velocity of the particle is $(2.0 \hat{i} + 4.0 \hat{j} + 6.0 \hat{k})$ m/s and the magnetic force on the particle is $(4.0 \hat{i} - 20 \hat{j} + 12 \hat{k})$ N. The x and y components of the magnetic field are equal. What is \overrightarrow{B}?

A proton, a deuteron ($q = +e$, $m = 2.0$ u), and an alpha particle ($q = +2e$, $m = 4.0$ u) all having the same kinetic energy enter a region of uniform magnetic field \overrightarrow{B}, moving perpendicular to \overrightarrow{B}. What is the ratio of (a) the radius r_d of the deuteron path to the radius r_p of the proton path and (b) the radius r_α of the alpha particle path to r_p?

Bainbridge's mass spectrometer, shown in Fig. 28-53, separates ions having the same velocity. The ions, after entering through slits, S_1 and S_2, pass through a velocity selector composed of an electric field produced by the charged plates P and P', and a magnetic field \overrightarrow{B} perpendicular to the electric field and the ion path. The ions that then pass undeviated through the crossed \overrightarrow{E} and \overrightarrow{B} fields enter into a region where a second magnetic field $\overrightarrow{B'}$ exists, where they are made to follow circular paths. A photographic plate (or a modern detector) registers their arrival. Show that, for the ions, $q/m = E/rBB'$, where r is the radius of the circular orbit.

In Fig. 28-54, an electron moves at speed $v = 100$ m/s along an x axis through uniform electric and magnetic fields. The magnetic field \overrightarrow{B} is directed into the page and has magnitude 5.00 T. In unit-vector notation, what is the electric field?

(a) In Fig. 28-8, show that the ratio of the Hall electric field magnitude E to the magnitude E_C of the electric field responsible for moving charge (the current) along the length of the strip is

$$\frac{E}{E_C} = \frac{B}{ne\rho},$$

where ρ is the resistivity of the material and n is the number density of the charge carriers. (b) Compute this ratio numerically for Problem 13. (See Table 26-1.)

A proton, a deuteron ($q = +e$, $m = 2.0$ u), and an alpha particle ($q = 2e$, $m = 4.0$ u) are accelerated through the same potential difference and then enter the same region of uniform magnetic field \overrightarrow{B}, moving perpendicular to \overrightarrow{B}. What is the ratio of (a) the proton's kinetic energy K_p to the alpha particle's kinetic energy K_α and (b) the deuteron's kinetic energy K_d to K_α? If the radius of the proton's circular path is 10 cm, what is the radius of (c) the deuteron's path and (d) the alpha particle's path?
80 An electron in an old-fashioned TV camera tube is moving at \(7.20 \times 10^6\) m/s in a magnetic field of strength 83.0 mT. What is the (a) maximum and (b) minimum magnitude of the force acting on the electron due to the field? (c) At one point the electron has an acceleration of magnitude 4.90 \(\times 10^{14}\) m/s\(^2\). What is the angle between the electron’s velocity and the magnetic field?

81 A 5.0 \(\mu\)C particle moves through a region containing the uniform magnetic field \(-20\mathbf{i}\) mT and the uniform electric field \(300\mathbf{j}\) V/m. At a certain instant the velocity of the particle is \((17\mathbf{i} - 11\mathbf{j} + 7.0\mathbf{k})\) km/s. At that instant and in unit-vector notation, what is the net electromagnetic force (the sum of the electric and magnetic forces) on the particle?

82 In a Hall-effect experiment, a current of 3.0 A sent lengthwise through a conductor 1.0 cm wide, 4.0 cm long, and 10 \(\mu\)m thick produces a transverse (across the width) Hall potential difference of 10 \(\mu\)V when a magnetic field of 1.5 T is passed perpendicularly through the thickness of the conductor. From these data, find (a) the drift velocity of the charge carriers and (b) the number density of charge carriers. (c) Show on a diagram the polarity of the Hall potential difference with assumed current and magnetic field directions, assuming also that the charge carriers are electrons.

83 A particle of mass 6.0 g moves at 4.0 km/s in an \(xy\) plane, in a region with a uniform magnetic field given by \(5.0\mathbf{i}\) mT. At one instant, when the particle’s velocity is directed 37\(^\circ\) counterclockwise from the positive direction of the \(x\) axis, the magnetic force on the particle is \(0.48\mathbf{k}\) N. What is the particle’s charge?

84 A wire lying along an \(x\) axis from \(x = 0\) to \(x = 1.00\) m carries a current of 3.00 A in the positive \(x\) direction. The wire is immersed in a nonuniform magnetic field that is given by \(\mathbf{B} = (4.00\ \text{T/m}^2)\mathbf{x}^2\mathbf{j} - (0.600\ \text{T/m}^2)\mathbf{x}^2\mathbf{j}\). In unit-vector notation, what is the magnetic force on the wire?

85 At one instant, \(\mathbf{v} = (-2.00\mathbf{i} + 4.00\mathbf{j} - 6.00\mathbf{k})\) m/s is the velocity of a proton in a uniform magnetic field \(\mathbf{B} = (2.00\mathbf{i} - 4.00\mathbf{j} + 8.00\mathbf{k})\) mT. At that instant, what are (a) the magnetic force \(\mathbf{F}\) acting on the proton, in unit-vector notation, (b) the angle between \(\mathbf{v}\) and \(\mathbf{F}\), and (c) the angle between \(\mathbf{v}\) and \(\mathbf{B}\)?

86 An electron has velocity \(\mathbf{v} = (32\mathbf{i} + 40\mathbf{j})\) km/s as it enters a uniform magnetic field \(\mathbf{B} = 60\mathbf{i}\) \(\mu\) T. What are (a) the radius of the helical path taken by the electron and (b) the pitch of that path? (c) To an observer looking into the magnetic field region from the entrance point of the electron, does the electron spiral clockwise or counterclockwise as it moves?